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Hutchinson’s method estimates the trace of a matrix function 𝑓 (𝐷) stochastically using samples
𝜏𝐻 𝑓 (𝐷)𝜏, where the components of the random vectors 𝜏 obey an isotropic probability distribu-
tion. Estimating the trace of the inverse of a discretized Dirac operator or variants thereof have
become a major challenge in lattice QCD simulations, as they represent the disconnected contri-
bution to certain observables. The Hutchinson Monte Carlo sampling, however, suffers from the
fact that its accuracy depends quadratically on the sample size, making higher precision estima-
tion very expensive. Meyer, Musco, Musco and Woodruff recently proposed an enhancement of
Hutchinson’s method, termed Hutch++, in which the sample space is enriched by several vectors
of the form 𝑓 (𝐷)𝜁 , 𝜁 a random vector as in Hutchinson’s method. Theoretical analyses show that
under certain circumstances the number of these added sample vectors can be chosen in a way to
reduce the dependence of the variance of the resulting estimator from the number 𝑁 of samples
from O(1/𝑁) to O(1/𝑁2).
In this study we combine Hutch++ with our recently suggested multigrid multilevel Monte Carlo
approach. We present results for the Schwinger discretization of the 2-dimensional Dirac operator,
revealing that the two approaches contribute additively to variance reduction.
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Variance Reduction for Estimating the Trace Mostafa Nasr Khalil

1. Introduction

In this study, we consider the task of estimating the trace of the inverse of a large sparse matrix
𝐷 ∈ 𝐶𝑛×𝑛, tr(𝐷−1) = ∑𝑛

𝑖 (𝐷−1)𝑖𝑖. While this task arises in a variety of different fields, we focus on
applications in Lattice QCD, where the disconnected fermion loop contribution to an observable is
obtained from the trace of the inverse of the discretized Dirac operator, possibly after multiplication
with certain 𝛾-matrices; see [1]. The disconnected fermion loop contributions become increasingly
important, as they cannot be neglected anymore given the accuracy of current state-of-the-art lattice
simulations. Due to its sheer size, the 𝑛 × 𝑛 matrix 𝐷−1 cannot be computed directly, and the only
way to access information on the entries of 𝐷−1 is through matrix-vector multiplications 𝐷−1𝜁 , i.e.
via the solution of linear systems with matrix 𝐷. This is where stochastic estimation techniques
come into play, starting with Hutchinson’s method [2]. Its key component is the use of random
vectors 𝜁 ∈ C𝑛, whose components 𝜁𝑖 obey an isotropic distribution, i.e.

E[|𝜁𝑖 |2] = 1, E[𝜁𝑖𝜁 𝑗] = 0 for 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ≠ 𝑗 . (1)

Typically, one takes the components to be identically independent distribution (i.i.d.) complex
numbers 𝑧 with E[𝑧] = 0 and E[|𝑧2 |] = 1. A prominent example is the Rademacher vectors, where
𝑧 is uniform in {−1, 1}. Averaging 𝜁𝐻𝐷−1𝜁 over 𝑠 independent random vectors 𝜁 gives an unbiased
estimator for the trace. Algorithm 1 shows how to proceed if a given relative target accuracy 𝜖
(actually: a confidence level of 68% corresponding to the 1𝜎 confidence interval if we rely on the
law of large numbers) is to be achieved.

Algorithm 1 plain Hutchinson
Input: 𝐷 ∈ C𝑛×𝑛 nonsingular, 𝜖 relative accuracy
Output: Approximation 𝜏 for tr(𝐷−1)

1: for 𝑠 = 1, 2, . . . do
2: generate next random vector 𝜁𝑠 ⊲ 𝜁𝑠 i.i.d. satisfying (1)
3: 𝜏𝑠 ← 𝜁𝐻𝑠 𝐷

−1𝜁𝑠 ⊲ solve linear system
4: 𝜏 = 1

𝑠

∑𝑠
𝑖=1 𝜏𝑖 ⊲ sample mean

5: 𝑉 = 1
𝑠−1

∑𝑠
𝑖=1 |𝜏𝑖 − 𝜏 |2 ⊲ sample variance

6: if 𝑉/𝑠 ≤ (𝜏𝜖)2 then
7: stop

More precise theoretical results are known for special classes of matrices as exemplified by the
following theorem from [3].

Theorem 1. Assume that the matrix 𝐴 is symmetric and positive semidefinite. Let tr𝐻 (𝐴) denote
the Hutchinson estimator with 𝑠 samples which are Rademacher vectors. Let 𝜖, 𝛿 ∈ (0, 1). Then, if

𝑠 ≥ 6
𝜖2 log

2
𝛿

(2)

one has
P
(��tr𝐻𝑠 (𝐴) − tr(𝐴)

�� ≤ 𝜖 tr(𝐴)) ≥ 1 − 𝛿. (3)
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The above theorem is a quantitative illustration of the crucial draw-back of Monte Carlo
trace estimation: The accuracy increases only with the square root of the number of samples, which
makes high accuracy samples practically infeasible unless modifications are found which reduce the
variance substantially. In section 2 we will discuss the most common methods for variance reduction
of the Hutchinson estimator based on projections. The recent Hutch++ algorithm presented in [4]
fits into this category with a special choice for the projection subspace. We do not consider probing
methods, which can be used additionally for variance reduction.

In section 3 we then first briefly recall the multilevel Monte Carlo approach relying on a
multigrid hierarchy for the matrix 𝐷, and then present a new approach which combines multigrid
multilevel Monte Carlo with the Hutch++ idea. Numerical results for the Schwinger model will be
reported in section 4.

2. Variance Reduction via Projection

For Rademacher vectors, the variance of the Hutchinson estimator for tr(𝐷−1) is given by
1
2 ∥offdiag(𝐷−1 + 𝐷−𝑇 )∥2

𝐹
, for 𝑍4-vectors it is ∥offdiag(𝐷−1)∥2

𝐹
; see [5], e.g., and the heuristics

underlying variance reduction techniques typically rely on just reducing ∥𝐷−1∥2
𝐹

.

2.1 Deflation

Deflation aims to “remove” a part from the operator which contributes most to the Frobenius
norm. Using an oblique or orthogonal projectorΠ on a yet to be determined 𝑘-dimensional subspace
one splits 𝐷−1 = (𝐼 − Π)𝐷−1 + Π𝐷−1 . Usually, tr(Π𝐷−1) can be reduced to the trace of a 𝑘 × 𝑘
matrix which can be evaluated directly, and the Hutchinson estimator is used on (𝐼 − Π)𝐷−1. A
summary of different choices for the deflating subspace can be found in [6].

Often, the deflating subspace is built from (approxmations to) small eigenmodes of 𝐷, i.e.
large eigenmodes of 𝐷−1. Deflation will thus become increasingly inefficient if the number of large
eigenvectors increases with the dimension of 𝐷−1 (“volume dependence”). Actually, as is argued
in [6], it can be advantageous to base deflation on singular triplets rather than eigenmodes. This
is because the Frobenius norm is the 2-norm of the vector of singular values, so deflating the 𝑘
largest singular triplets via a projection on the space spanned by the corresponding 𝑘 (right) singular
vectors of 𝐷 sets the 𝑘 largest singular values of 𝐷−1 to 0 in (𝐼 − Π)𝐷−1.

2.2 Exact Deflation

With (𝑢𝑖 , 𝑣𝑖 , 𝜎𝑖) denoting the singular triplets of 𝐷, 𝐷𝑣𝑖 = 𝜎𝑖𝑢𝑖 , and the singular values 𝜎𝑖
ordered increasingly, exact deflation uses the orthogonal projector Π = 𝑉𝑘 (𝑈𝐻

𝑘
𝐷𝑉𝑘)−1𝑈𝐻

𝑘
𝐷 =

𝑉𝑘𝑉
𝐻
𝑘

, where𝑈𝑘 = [𝑢1 |...|𝑢𝑘], 𝑉𝑘 = [𝑣1 |...|𝑣𝑘]. Then the trace of 𝐷−1 can be split as

tr(𝐷−1) = tr((𝐼 − Π)𝐷−1) + tr(Π𝐷−1). (4)

The first term in eq. (4) can be expected to have reduced variance and can be estimated stochas-
tically via Alg. 1 with less samples. The second term is available directly since tr(Π𝐷−1) =
tr(𝑉𝐻

𝑘
𝐷−1𝑉𝑘) =

∑𝑘
𝑖=1

1
𝜎𝑖
𝑢𝐻
𝑖
𝑣𝑖 . If instead𝑈𝑘 and 𝑉𝑘 contain the left and right eigenvectors belong-

ing to the smallest eigenvalues𝜆𝑖 of𝐷, then the oblique projectorΠ = 𝑉𝑘 (𝑈𝐻
𝑘
𝐷𝑉𝑘)−1𝑈𝐻

𝑘
𝐷 = 𝑉𝑘𝑈

𝐻
𝑘

3
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achieves tr(Π𝐷−1) = tr(𝑈𝐻
𝑘
𝐷−1𝑉𝑘) =

∑𝑘
𝑖=1

1
𝜆𝑖
. If 𝐷 is Hermitian and positive definite, the two

deflation approaches coincide, since then left and right eigenvectors as well as left and right singular
vectors all coincide, and the singular values are the eigenvalues.

2.3 Inexact Deflation

Exact deflation requires the precise computation of singular triplets or eigenpairs, which can
be quite costly. We can instead work with approximations and still build the projection Π the
same way as in exact deflation. Now, tr(Π𝐷−1) is not directly available from approximate singular
triplets or eigenvalues and the projector 𝑉𝑘 (𝑈𝐻

𝑘
𝐷𝑉𝑘)−1𝑈𝐻

𝑘
𝐷 differs from the projector 𝑉𝑘𝑉𝐻

𝑘
, e.g.

Using the former gives tr(Π𝐷−1) = tr(𝑉𝑘 (𝑈𝐻
𝑘
𝐷𝑉𝑘)−1𝑈𝐻

𝑘
), which requires the inversion of a small

𝑘 × 𝑘 matrix and 𝑘 multiplications with 𝐷. Using the latter gives tr(Π𝐷−1) = tr(𝑉𝐻
𝑘
𝐷−1𝑉𝑘) which

requires 𝑘 system solves with the large matrix 𝐷.
If we have a sparse representation for 𝑈𝑘 and 𝑉𝑘 , we can efficiently use very large values for

𝑘 in inexact deflation. This is the case with multigrid prolongation and restriction operators; see
[5, 7, 8] and section 3.

2.4 Hutch++

Hutch++ [4] is an inexact deflation method, where the deflating subspace is obtained from
𝐷−1-images of random vectors: We precompute 𝑦𝑖 := 𝐷−1𝑠𝑖 for 𝑑 i.i.d. isotropic random vectors
𝑠𝑖 . This is one step of a block power method to approximate the largest eigenpairs of 𝐷−1. We
build an orthogonal projector Π on the space spanned by the 𝑦𝑖 as Π = 𝑄𝑄𝐻 with the columns
of 𝑄 ∈ C𝑛×𝑑 representing an orthonormal basis for that space spanned, typically obtained through
a QR-factorization of 𝑌 = [𝑦1 | · · · |𝑦𝑑]. The range of the vectors 𝑦𝑖 contains, with increasing
probability as 𝑑 increases, good approximations to eigenvectors belonging to large eigenvalues of
𝐷−1. As before, we decompose the matrix as

𝐷−1 = (𝐼 −𝑄)𝐷−1 +𝑄𝐷−1. (5)

As usual, the trace of the first summand in eq. (5) is estimated stochastically and should have
a reduced variance. For the trace of the second term, we use tr(𝑄𝐷−1) = tr(𝑉𝐻𝐷−1𝑉), which
requires another 𝑑 system solves with 𝐷. Under the assumption that a system solve with 𝐷 has
cost O(𝑛2), an asymptotic analysis in [4] shows that for a given budget of 𝑁 system solves, the
optimal choice for 𝑑 is 𝑑 = 𝑁/3. The recent paper [9] develops an adaptive technique to choose
𝑑 optimally for a given target accuracy. All these results rely on the matrix being Hermitian (and
positive definite).

3. Multilevel Monte Carlo (MLMC)

MLMC [10, 11] is a generalization of standard Monte Carlo. The idea is to represent a random
variable 𝑋 as a sum

𝑋 =

𝐿∑︁
ℓ=1

𝑋ℓ (6)

4
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using additional random variables 𝑋ℓ such that the variance of the 𝑋ℓ is small when it is costly to
evaluate and possibly large when it is cheap to evaluate. The different random variables can now
be estimated stochastically and independently to obtain an estimator for 𝑋 .

The variance 𝜌2 for the resulting estimator forE[𝑋] is the sum of the variances of the estimators
for E[𝑋ℓ]. In the uniform approach one chooses the number 𝑁ℓ of samples at each ‘level’ ℓ such that
V[𝑋ℓ]/𝑁ℓ = 𝜌2/𝐿. If one knows the cost 𝐶ℓ for an evaluation of 𝑋ℓ , the problem of minimizing
the total cost under the constraint to obtain a variance of 𝜌2 is solved for the optimal values [11]

𝑁ℓ =
1
𝜌2

√︁
V[𝑋ℓ]/𝐶ℓ

𝐿−1∑︁
𝑗=1

√︃
V[𝑋 𝑗]𝐶 𝑗 . (7)

The variance of the estimator for 𝑋ℓ with 𝑁ℓ samples is then

V[𝑋ℓ]/𝑁ℓ = 𝜌
2
√︁
V[𝑋ℓ]𝐶ℓ

/
𝐿−1∑︁
𝑗=1

√︃
V[𝑋 𝑗]𝐶 𝑗 . (8)

3.1 Multigrid Multilevel Monte Carlo (MG-MLMC) for the trace

In [5] we proposed a multilevel Monte Carlo method based on a multigrid hierarchy to reduce
the variance. One splits the original matrix 𝐷−1

1 = 𝐷−1 into a telescopic sum as:

𝐷−1
1 = (𝐷−1

1 − 𝑃1𝐷
−1
2 𝑅1) + (𝑃1𝐷

−1
2 𝑅1 − 𝑃1𝑃2𝐷

−1
3 𝑅2𝑅1) . . . + 𝑃1 · · · 𝑃𝐿−1𝐷

−1
𝐿 𝑅𝐿−1 · · · 𝑅1

=

𝐿−1∑︁
ℓ=1

(
�̂�ℓ𝐷

−1
ℓ �̂�ℓ − �̂�ℓ+1𝐷−1

ℓ+1�̂�ℓ+1
)
+ �̂�𝐿𝐷

−1
𝐿 �̂�𝐿 , (9)

where �̂�ℓ = 𝑃1 · · · 𝑃ℓ−1, �̂�ℓ = 𝑅ℓ−1 · · · �̂�1.

Here, the 𝑃ℓ and 𝑅ℓ are the prolongation and restriction operators between consecutive levels
of the multigrid hierarchy, respectively, 𝐷ℓ+1 = 𝑅ℓ𝐷ℓ𝑃ℓ are the (Galerkin) coarse grid operators,
and �̂�ℓ and �̂�ℓ are the accumulated prolongations and restrictions which transport between level 1
and ℓ. Note that with the projector Π1 = 𝑃1𝐷

−1
2 𝑅1𝐷1 we have Π1𝐷

−1
1 = 𝑃1𝐷

−1
2 𝑅1 and similarly

for the coarser levels, thus establishing the connection with inexact deflation discussed in section 2.
In multigrid, the prolongations 𝑃ℓ are precisely constructed in a manner that they contain good
approximations to the small eigenmodes or singular triplets of 𝐷ℓ .

The decomposition eq. (9) gives a multilevel decomposition for the trace as

tr
(
𝐷−1

1

)
=

𝐿−1∑︁
ℓ=1

tr
(
�̂�ℓ𝐷

−1
ℓ �̂�ℓ − �̂�ℓ+1𝐷−1

ℓ+1�̂�ℓ+1
)
+ tr

(
�̂�𝐿𝐷

−1
𝐿 �̂�𝐿

)
(10)

to be used in a MLMC method. We expect the variance for each level difference �̂�ℓ𝐷−1
ℓ
�̂�ℓ −

�̂�ℓ+1𝐷−1
ℓ+1�̂�ℓ+1 to be small, since the prolongations 𝑃ℓ+1 are built to approximate small eigenpairs

or singular triples of 𝐷ℓ . The sizes of the matrices to invert on each level difference decrease
significantly with the level, thus making a stochastic sample increasingly less costly.

On the coarsest level 𝐿, depending on the size of the matrix 𝐷𝐿 , we might be able to compute
the trace directly as

∑𝑁𝐿

𝑖=1 𝑒
𝑇
𝑖
𝐷−1

𝐿
�̂�𝐿 �̂�𝐿𝑒𝑖 . If we do it stochastically, we have to invert a matrix whose

dimension is very small compared to that of 𝐷.
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In the successful multigrid approaches for the Wilson-Dirac matrix or its twisted mass variant,
see [12–15], the restrictions and prolongations are aggregation based with 𝑅ℓ = 𝑃𝐻

ℓ
, and their

columns are orthonormal, 𝑃𝐻
ℓ
𝑃ℓ = 𝐼. This is why, using the cyclic property of the trace, eq. (9)

gives

tr(𝐷−1
1 ) =

𝐿−1∑︁
ℓ=1

tr
(
𝐷−1

ℓ − 𝑃ℓ𝐷
−1
ℓ+1𝑃

𝐻
ℓ

)
+ tr

(
𝑃𝐿−1𝐷

−1
𝐿 𝑃𝐻

𝐿−1

)
. (11)

In contrast to eq. (10) this allows to work with random vectors of the smaller size 𝑛ℓ instead of
𝑛 on the various difference levels.

3.2 Multigrid Multilevel Monte Carlo++ (MG-MLMC++)

The idea of MG-MLMC++ is to apply the Hutch++ estimator for each of the level differences
in the multilevel decomposition eq. (10). We describe the method in Algorithm 2.

Algorithm 2 MLMC++, optimal accuracies, fixed numbers of deflation vectors

Input: 𝐷 ∈ C𝑛×𝑛 nonsingular, 𝜖 relative accuracy, 𝐿 number of levels, �̂�ℓ , �̂�ℓ restriction and
prolongation operators between levels 1 and ℓ, 𝐷ℓ ∈ C𝑛ℓ×𝑛ℓ matrix on level ℓ, 𝑑ℓ number of
deflation vectors on level ℓ, ℓ = 1, . . . , 𝐿,

Output: Approximation
∑𝐿−1

ℓ=1 (𝜏lr
ℓ
+ 𝜏ℓ) + 𝜏𝐿 for tr(𝐷−1)

1: 𝜏𝐿 ←
∑𝑁𝐿

𝑖=1 (𝑒
𝑇
𝑖
�̂�𝐿)𝐷−1

𝐿
(�̂�𝐿𝑒𝑖) ⊲ coarsest level is computed directly

2: for ℓ = 1, . . . , 𝐿 − 1 do ⊲ obtain deflation vectors
3: generate 𝑑ℓ i.i.d. random vectors 𝑠𝑖 , 𝑖 = 1, . . . , 𝑑ℓ , ⊲ with distribution satisfying (1)
4: collect them as columns in 𝑆ℓ ∈ C𝑛×𝑑ℓ
5: 𝑌ℓ ←

(
�̂�ℓ𝐷

−1
ℓ
�̂�ℓ − �̂�ℓ+1𝐷−1

ℓ+1�̂�ℓ+1
)
𝑆ℓ , ⊲ 𝑌ℓ ∈ C𝑛×𝑑ℓ , solve linear system.

6: Compute QR-factoriz. 𝑌ℓ = 𝑄ℓ𝐾ℓ ⊲ 𝑄ℓ = [𝑞1 | · · · |𝑞𝑑ℓ ] ∈ C𝑛×𝑑ℓ has orthon. cols
7: 𝜏lr

ℓ
← ∑𝑑ℓ

𝑖=1 𝑞
𝐻
𝑖

(
�̂�ℓ𝐷

−1
ℓ
�̂�ℓ − �̂�ℓ+1𝐷−1

ℓ+1�̂�ℓ+1
)
𝑞𝑖 ⊲ low rank part, use mg to solve lin. sys.

8: Set all levels ℓ to active ⊲ non active levels have reached required accuracy
9: for 𝑠 = 1, 2, . . . until all levels ℓ not active do ⊲ stochastic part

10: for ℓ = 1, . . . , 𝐿 − 1 and ℓ is active do
11: generate next random vector 𝜁𝑠 ⊲ 𝜁𝑠 i.i.d. satisfying (1)
12: 𝑧𝑠 = 𝜁𝑠 −𝑄ℓ (𝑄𝐻

ℓ
𝜁𝑠) ⊲ projected vector

13: 𝜏𝑠,ℓ ← 𝑧𝐻𝑠
(
�̂�ℓ𝐷

−1
ℓ
�̂�ℓ𝜁𝑠 − �̂�ℓ+1𝐷−1

ℓ+1�̂�ℓ+1𝜁𝑠
)

14: 𝐶𝑠,ℓ ← cost for lines 12 - 13
15: 𝜏ℓ =

1
𝑠

∑𝑠
𝑖=1 𝜏𝑖,ℓ , 𝑉ℓ =

1
𝑠−1

∑𝑠
𝑖=1 |𝜏𝑖,ℓ − 𝜏ℓ |2 ⊲ sample mean and variance

16: 𝐶ℓ =
1
𝑠

∑𝑠
𝑖=1𝐶𝑖,ℓ ⊲ average cost per sample

17: 𝜏 =
∑𝐿

ℓ=1(𝜏ℓ + 𝜏lr
ℓ
)

18: for ℓ = 1, . . . , 𝐿 − 1 and ℓ is active do ⊲ update target accuracies 𝜌ℓ
19: 𝜌ℓ ←

(√
𝐶ℓ𝑉ℓ /

∑𝐿−1
𝑗=1

√︁
𝐶 𝑗𝑉 𝑗

)1/2
· (𝜖𝜏)

20: if 𝑉ℓ/𝑠 ≤ 𝜌2
ℓ

then
21: set level ℓ to inactive

6
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Schwinger model
𝐿 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4
4 𝑛ℓ 2 · 1282 4 · 322 8 · 82 8 · 22

nnz(𝐷ℓ) 2.94𝑒5 1.64𝑒5 2.46𝑒4 1024
mass 𝑚1 = −0.1320 𝑚2 = −0.1325 𝑚3 = −0.1329 𝑚4 = −0.1332 𝑚5 = −0.1333

defl. vects. 384 384 512 512 512

Table 1: Parameters used in the Schwinger model and number of deflated eigenvectors chosen in exactly
deflated Hutchinson. nnz(𝐷ℓ) denotes the number of non-zero elements in 𝐷ℓ

Some of its more important features are:

• We assume that we have a cost model to measure the cost for a stochastic sample. We take
averages of the cost for each stochastic sample to get increasingly accurate average costs 𝐶ℓ .

• With this measured cost and the measured sample variance 𝑉ℓ we determine the optimal
target variance from eq. (8) for each level difference. This target variance is updated at each
additional sample on that level difference.

• We describe the algorithm using the decomposition eq. (10) with the accumulated prolonga-
tions and restrictions. The adaptation to eq. (11), should it apply, is straightforward.

• The number of deflation vectors 𝑑ℓ for each level difference must be chosen a priori.

• Lines 5 and 6 perform one step of the block power iteration, the crucial ingredient of the
Hutch++ method. We can perform more than 1, 𝑘 say, iterations of the block power method
by repeating these lines with 𝑆ℓ in the next sweep equal to 𝑄ℓ from the previous sweep.

4. Numerical Results

Numerical computations were performed using Python on a single core of a node with 44 cores
Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz. We demonstrate the benefits of MG-MLMC++
over exactly deflated Hutchinson and the benefits of MG-MLMC with the two types of accuracies
by using the Schwinger discretization of the 2-dimensional Dirac operator [16] with the same
configuration and parameters as in [5]. In particular, we use 5 different (negative) masses 𝑚 to shift
the mass-less Schwinger operator by the respective multiple of the identity, thus yielding operators
with increasing condition number. The multigrid hierarchy was constructed with a bootstrap setup
and aggregation based prolongations as in DD𝛼AMG [14]. Properties of the matrices at the various
levels are summarized in the top part of Table 1.

To assess the performance of the algorithms we use a simple cost model which counts the
arithmetic operations in all occurring matrix-vector multiplications, i.e. in the projections, the
restrictions and prolongations and in the smoothing iteration in the multigrid solver. This arithmetic
cost is proportional to the number of non-zeros in the respective matrix, and as an indication, this
number is reported for the operators at the different levels in Table 1.

We use a deflated Hutchinson method as our reference for comparison. We did not use non-
deflated Hutchinson, because its performance is by two orders of magnitude worse than that of
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Figure 1: MG-MLMCM, MG-MLMC++ and deflated Hutchinson for the Schwinger matrix: total cost for
different masses with uniform and the optimized target variances.

deflated Hutchinson. For deflation, we used the 𝑘 smallest eigenmodes that we precomputed, and
then optimized 𝑘 so as to obtain the smallest overall cost, excluding the cost for the eigenvector
computation. So the work for deflated Hutchinson is actually higher than what we report.

Fig. 1 reports the arithmetic cost in MFlops for five different methods: Deflated Hutchinson for
reference, MG-MLMC with uniform target variances on the difference levels and its modification
working with optimal target variances, and then the corresponding two versions for MG-MLMC++.
Here, we determined the number 𝑘 of steps of the block power iteration and the number 𝑑ℓ of
vectors to be used there by a parameter scan on each level. This scan is reported in Fig. 2. We find
that 𝑘 = 2 is a better choice than 𝑘 = 1, and that increasing 𝑘 further does not result in significant
further gains. Also, 𝑑ℓ ≈ 50 appears as a good choice on all level differences.

The plot in Fig. 1 shows that for all masses considered, the best MLMC method now outperforms
deflated Hutchinson (with an optimal number of deflated vectors and without counting the work for
computing those). It also shows that with optimal numbers of vectors in the block power iteration,
the “++”-enhancement improves MLMC by a factor of 1.5 to 3, with a stronger improvement for
the smaller values of 𝑚, i.e. the more ill-conditioned matrices. The influence of the strategy to
determine the target variance (“uniform” or “optimized”) is, on the other hand, not very significant.

As a supplementary information, Tab. 2 reports the number of stochastic samples that were
carried out on the different level differences. These numbers directly illustrate the variance re-
ductions achieved in the different approaches. Each stochastic sample involves the solution of two
linear systems (with matrices 𝐷ℓ and 𝐷ℓ+1). These are done via multigrid and are thus quite
efficient. This is why the numbers of stochastic samples do not reflect the total arithmetic cost of
the methods, in which, in particular, performing the projections has a high cost when the deflating
subspace becomes larger. Interestingly, there is no visible dependence on the mass parameter for
the MLMC approaches as was already observed in [5].

5. Conclusion

We have developed MG-MLMC++, a new trace estimator for the inverse which combines
multigrid multilevel Monte Carlo with the recent Hutch++ approach. We have shown that the
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Figure 2: Work at each level difference as a function of the number of vectors in the block power iteration
and total work when taking the same number on all levels. .

method type samples nr. per mass
m1 m2 m3 m4 m5 level

deflated Hutchinson 529 1004 2318 7431 13845
MG-MLMC, optimized target variances 325 321 315 313 306 ℓ = 1

854 873 837 833 791 ℓ = 2
4208 4218 4414 4287 4171 ℓ = 3

MG-MLMC++, optimized target variances 181 158 143 108 177 ℓ = 1
221 221 200 148 111 ℓ = 2
278 272 243 162 173 ℓ = 3

Table 2: Number of stochastic samples for different masses at each level ℓ for deflated Hutchinson, MG-
MLMC and MG-MLMC++, both with optimized target variances

method outperforms other ones in trace computations for the Schwinger model. How to easily
obtain a good choice for the number of vectors to use in the block power iteration is a subject of
future research as is the application of our approach to the 4-dimensional (Wilson-) Dirac operator.
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