
P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal
with poor scaling?

Javad Komijani𝑎,∗ and Marina K. Marinkovic𝑎

𝑎Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

E-mail: jkomijani@phys.ethz.ch

Generative models, such as the method of normalizing flows, have been suggested as alternatives to
the standard algorithms for generating lattice gauge field configurations. Studies with the method
of normalizing flows demonstrate the proof of principle for simple models in two dimensions.
However, further studies indicate that the training cost can be, in general, very high for large
lattices. The poor scaling traits of current models indicate that moderate-size networks cannot
efficiently handle the inherently multi-scale aspects of the problem, especially around critical
points. We explore current models with limited acceptance rates for large lattices and examine
new architectures inspired by effective field theories to improve scaling traits. We also discuss
alternative ways of handling poor acceptance rates for large lattices.

The 39th International Symposium on Lattice Field Theory,
8th-13th August, 2022,
Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:jkomijani@phys.ethz.ch
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal with poor scaling? Javad Komĳani

1. Introduction

The method of trivializing maps was formulated by Lüscher [1] to improve the efficiency of
Markov Chain Monte Carlo (MCMC) simulations of lattice QCD by mapping the theory to another
one that is easier to simulate, ideally to a theory in which the degrees of freedom are decoupled.
Lüscher discussed how to construct such a map systematically by integrating certain flow equations
in field space and pointed out that, once such a map is constructed, the theory “can be simulated
simply by generating uniformly distributed random gauge fields” [1]. Although the last remark
seemed “likely to remain an academic one” [1], it took less than one decade that a similar idea,
which is called the method of normalizing flows (NF), flourished with many applications such as
image generation; for review, see Refs. [2, 3]. The method of normalizing flows is implemented
using deep neural networks rather than integrating certain flow equations. Deep neural networks
can approximate a huge class of functions and, as a result, provide a way to tackle complicated
problems without a need to model them first, in this case, constructing some flow equations and
integrating them. This, however, does not mean that one cannot use theoretical developments to
construct more suitable neural network architectures for NF.

Li and Wang [4] used a flow-based method for sampling from a dual version of two-dimensional
Ising model that resembles a scalar field theory. Albergo et.al. [5, 6] extended the study by applying
NF to scalar field theories with quartic potential in two-dimensional lattices up to 142 sites and
discussed in detail different aspects of the algorithm such as effects on the autocorrelation time. Del
Debbio et.al. [7] explored the scalability of the method by investigating lattices up 202 sites using
different architectures. Their study indicates that, in general, the method’s efficiency deteriorates
as the lattice size increases (for a fixed architecture). For a review of applications of generative
models on lattice field theory, we refer the reader to Ref. [8]. In this manuscript, we expand the
study of scalar field theories with quartic potential in two dimensions by introducing a novel flow
model inspired by effective field theories, discuss the scalability of the model, and present a way to
deal with the low acceptance rate at large volumes.

2. Background and review of widely used architectures for NF

Let us start with a quick comment about the method of inverse transform sampling (ITS). This
method can be used to draw samples from the probability density function (PDF) of a continuous
random variable, 𝑓𝑌 (𝑦), by sampling from a simpler one, 𝑓𝑋 (𝑥), and transforming the samples
using

𝑦 = 𝐹−1
𝑌 ◦ 𝐹𝑋 (𝑥) , (1)

in which 𝐹𝑋 and 𝐹𝑌 stand for the cumulative distribution functions of 𝑥 (the prior) and 𝑦 (the
target) variables. The method of NF can be considered a generalization of the ITS method to
higher dimensional distributions. With the method of NF, we deal with a series of invertible and
differentiable transformations that are typically implemented by deep neural networks. The series
of transformations map the prior variables/distribution to a new one that we simply refer to as the
transformed variables/distribution. Training a NF-based model is then nothing but optimizing the
parameters of the model such that the transformed distribution resembles the target distribution. To

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal with poor scaling? Javad Komĳani

prior transform

action

switch

/ Metropolis

delay

gradient descent

TRAIN

GENERATE

ACCEPT/REJECT

ξ(x)

r[ξ]

φ(x)

q[φ]

p[φ] log q/p

on/off

Figure 1: Block diagram for the method of normalizing flows. b (𝑥) and 𝜙(𝑥) are the prior and transformed
fields at position 𝑥, and and 𝑟 [b] and 𝑞 [𝜙] are corresponding probability densities. The “GENERATE“ block
illustrates the integration of NF and MCMC by including an accept/reject step.

this end, one can minimize the relative entropy of the transformed and target distributions using the
Kullback-Leibler (KL) divergence

𝐷KL(𝑞 | |𝑝) ≡
∫

𝑑𝜙 𝑞 [𝜙] log
𝑞 [𝜙]
𝑝 [𝜙] ≥ 0. (2)

Here, 𝜙 denotes the transformed variables; 𝑝 [𝜙] is the target PDF; and 𝑞 [𝜙], which can be written
in terms of the prior PDF and the Jacobian of transformation, is the transformed PDF. The equality
in KL divergence holds only if 𝑝 [𝜙] = 𝑞 [𝜙]. The “TRAIN” block in Fig. 1 depicts the described
training procedure. Here, b (𝑥) and 𝜙(𝑥) are the prior and transformed fields at position 𝑥, and 𝑟 [b]
and 𝑞 [𝜙] are corresponding probability densities. For the prior, we use a set of independent normal
distributions. The target PDF is

𝑝 [𝜙] = 1
𝑍
𝑒−𝑆 [𝜙] ,

where 𝑆 is the action of the theory and the normalization factor 𝑍 is typically not known, indicating
that the lower bound in (2) is not known.

Once the model is perfectly trained, one can use it to draw samples from the target distribution.
In practice, however, it is unlikely to find a perfectly trained model, especially when the degrees of
freedom increase. To correct the samples, one can integrate the method of NF with MCMC. For
example, Ref. [5] introduced an accept/reject step as used in the Metropolis-Hastings algorithm to
ensure exactness. The “GENERATE” block in Fig. 1 illustrates such an integration, in which the
accept/reject step is formulated using the logarithm of the ratio of transformed and target densities,
log(𝑞 [𝜙]/𝑝 [𝜙]), of consecutive proposed fields as input.

The method of normalizing flows requires invertible transformations, putting some restrictions
on NF architectures. Coupling flows are one of the most widely used architectures; see Refs. [2, 3]
for reviews of different types of flows. With coupling flows, one divides the field degrees of
freedom into two partitions, which can be labeled as 𝑎 (active) and 𝑓 (frozen/fixed) partitions. A
checkerboard-like mask is convenient for such partitioning. Each coupling-flow layer transforms
the active partition by a function parametrized with the frozen partition of the data:

𝑥𝑎 → 𝑇 (𝑥𝑎;Θ(𝑥 𝑓 )) .

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal with poor scaling? Javad Komĳani

It is convenient to employ element-wise operations for 𝑇 , e.g., element-wise linear (affine) and
spline transformations. With such transformations, the Jacobian matrix is triangular, making it easy
to calculate its determinant. Contrary to 𝑇 , the form of Θ can be extremely complicated, which is
usually implemented by deep neural networks.

There are two widely used neural networks to model Θ: linear (dense) networks and convo-
lutional networks. The former is great for small-size lattices, but the number of parameters grows
fast as the size of the lattice grows. The latter takes advantage of the translational symmetry of the
underlying theory and in general needs much fewer parameters. However, the latter requires many
layers of neural networks to propagate the correlation throughout the data.

3. Designing new architectures for normalizing flows

3.1 Effective action and power spectral density

Inspired by symmetries of the action and effective theories of scalar fields, our primary goal in
this section is to construct a novel flow layer that can propagate the correlation in data in an efficient
way. To this end, we start with an effective description of a real, scalar field theory. The action of
such a field in 𝑑 spacetime dimensions is

𝑆[𝜙] =
∫

𝑑𝑑𝑥

(
Z

2
𝜕`𝜙(𝑥)𝜕`𝜙(𝑥) +

𝑚2

2
𝜙2(𝑥) +

∞∑︁
𝑛=3

𝑔𝑛𝜙
𝑛 (𝑥)

)
. (3)

The corresponding quantum effective action reads

Γ[𝜙] = 1
2

∫
𝑑𝑑𝑘

(2𝜋)𝑑
(
Z 𝑘2 + 𝑚2 + Π(𝑘2)

)
|𝜙(𝑘) |2 + · · · , (4)

where 𝜙(𝑘) is the scalar field in Fourier space. The quantum effective action has the following
property: the tree-level Feynman diagrams that it generates give the complete scattering amplitude
of the original theory [9]. Note that

(
Z 𝑘2 + 𝑚2 + Π(𝑘2)

)
is the inverse of the two-point correlator

and, employing the engineering terminology, it is the inverse of the power spectral density (PSD).
As manifested in (4), an element-wise operation on 𝜙(𝑘) can map the PSD to the one of

interest. Depending on the properties of PSD, one can restrict the map even further. For example,
the Lorentz invariance of PSD implies that the element-wise operation depends only on 𝑘2. Let
us now examine a couple of examples for further restrictions. Figure 2 shows the inverse of PSD
of a 𝜙4 scalar theory with double-well potential in one and two dimensions obtained from MCMC
simulations plotted against �̂�2 =

∑
𝑖 4 sin2(𝑘𝑖/2). The figure indicates that the inverse of PSD can

be modeled using a positive, monotonically increasing function of �̂�2. Here, we model the inverse
of PSD with a rational quadratic spline (RQS) [10–12] as a function of �̂�2, and we scale 𝜙(𝑘)
accordingly.

In the case of a two-dimensional problem, PSD blows up at 𝑘2 = 0 in the broken phase.
This special point can be handled using the mean field theory: The mean-field potential turns to a
double-well potential at the broken phase. Therefore, at 𝑘2 = 0, instead of scaling 𝜙(0), we feed it
to a separate RQS, which can change the distribution of 𝜙(0) to a multi-modal distribution.

We use the term PSD flow to denote the described transformation. Note that a PSD flow can
change the correlation in data at the largest and shortest scales. In the next part, we investigate an
architecture with one PSD-flow layer followed by four coupling-flow layers.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal with poor scaling? Javad Komĳani

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k̂2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
1/

P
S

D 0.000 0.025 0.050 0.075
0.00

0.05

0.10

3.6 3.7 3.8 3.9 4.0
3.6

3.8

4.0

0 1 2 3 4 5 6 7 8
k̂2

0

1

2

3

4

5

6

7

8

1/
P

S
D

Figure 2: The inverse of PSD of quartic scaler field theories with double-well potential (from MCMC
simulations). Left: One-dimensional lattice with size 𝐿 = 1024 and parameters Z = 1, 𝑚2 = −1.6, 𝑔4 = 0.1
(with lattice spacing set to 0.125). Right: Two-dimensional lattice with size 𝐿2 = 322 and parameters
Z = 0.7, 𝑚2 = −2.8, and 𝑔4 = 0.5. The dashed lines are guide for the eye.

3.2 A new architecture

In this part, we explain how we use a PSD-flow layer to construct a new NF architecture for a
real, scalar field theory in two dimensions, and we investigate the scalability of the new architecture.

The architecture that we investigated contains three blocks. A PSD-flow layer, followed by two
blocks of affine coupling flows, each block has two layers alternating the active and frozen partitions.
(In total, there are four coupling-flow layers.) For the Θ function in the affine coupling flows, we
use convolutional neural networks. Each of the three blocks has its own activation: symmetric
RQS, tanh, symmetric RQS, respectively. Unlike the tanh activation, the symmetric RQS splines
that we use have free parameters. We use symmetric RQS activations because they respect the 𝑍2

symmetry of 𝜙4 scalar theories. In total, there are about 3.4 K parameters in the model. We use
this NF model for 𝜙4 scalar fields in two dimensions with several values of 𝐿: 8, 12, 16, · · · , 64.
We train the model for the 82 lattice with 10 K epochs. For the 122 lattice, instead of training from
scratch, we rely on transfer learning: we start from the model trained for the 82 lattice and train it
for 5 K epochs. Then, we use the model trained for the 122 lattice as the starting point for the 162

lattice and analogously for larger lattices.
In order to compare our results with the literature, we fix the parameters of the action in (3)

as follows: Z = ^, 𝑚2 = −4^, 𝑔4 = 1/2, and 𝑔𝑛 = 0 for 𝑛 ≠ 4. Varying ^ from 0.5 to 0.8, we can
compare our results with Ref. [7][Fig. 4]. The left panel of Fig. 3 shows the acceptance rate plotted
against ^ for several values of lattice size. For 𝐿 = 8 lattices, the acceptance rate of the trained
models has a mild dependence on ^. As the lattice size increases, the acceptance rate decreases.
Similar to Ref. [7], we observe that as ^ approaches its critical value (^𝑐 ≈ 0.67), the acceptance
rate deteriorates faster as the lattice size increases.

The middle and right panels of Fig. 3 show the acceptance rate plotted against 𝐿 and 𝐿2,
respectively. The acceptance rate drops exponentially fast as 𝐿 increases, but the asymptotic
dependence cannot be reliably extracted from the graphs. To investigate this behavior, we examine
the acceptance rate and its dependence on the distribution of log 𝑞 [𝜙]/𝑝 [𝜙] by introducing a toy

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal with poor scaling? Javad Komĳani

0.5 0.6 0.7 0.8
κ

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce

pt
an

ce
ra

te

L
8

12

16

20

26

32

46

64

20 40 60
L

10−3

10−2

10−1

100

ac
ce

pt
an

ce
ra

te

κ
0.5

0.54

0.58

0.6

0.62

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.72

0.76

0.8

0 1000 2000 3000 4000
L2

10−4

10−3

10−2

10−1

100

ac
ce

pt
an

ce
ra

te

κ
0.5

0.54

0.58

0.6

0.62

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.72

0.76

0.8

Figure 3: Acceptance rate plotted against ^, 𝐿, and 𝐿2. The dashed lines are guide for the eye.

Figure 4: Histograms of snapshots of 𝜙(𝑥) from the prior and outputs of three blocks of transformations.
The lower panels show corresponding 2-point correlation functions.

model in the next part.
Before concluding this part, it is in order to see the effect of employing a PSD-flow layer. To

this end, we present results from the model with parameters ^ = 0.6 and 𝐿 = 32. Figure 4 shows
histograms of snapshots of 𝜙(𝑥) from the prior (upper left panel) and the outputs of three blocks of
transformations (2nd, 3rd, and 4th columns, respectively). The lower panels show corresponding 2-
point correlation functions. We observe that the PSD-flow block (the second column) can introduce
a correlation to the data that roughly remains unchanged in the next blocks.

4. Variance in log(𝑞/𝑝), acceptance rate, and poor scaling at large volumes

The distribution of log(𝑞 [𝜙]/𝑝 [𝜙]) determines the acceptance rate of the model. For the
architecture investigated here, we observe that the variance of log(𝑞/𝑝) roughly scales with the
volume of the lattice in most cases. This rough behavior can be heuristically explained as follows.
One can divide a large lattice into multiple blocks. If the blocks are large enough, the field

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal with poor scaling? Javad Komĳani

fluctuations in one block can be considered independent of other blocks. Then, the variance of
log(𝑞/𝑝) is proportional to the number of blocks and, in turn, to the volume of the lattice.

It is easy to compose models that yield a large acceptance rate for a small lattice. As the
lattice volume increases, the given model reaches a poor scaling area. One can improve the model’s
performance by changing the hyperparameters, adding more layers, or using more complicated
architectures. As an alternative approach, we introduce and use a method that we call block
updating. To this end, we first introduce a toy model, investigate it, and explain the block-updating
approach.

4.1 Toy model

Let 𝑥𝑛 be a sequence of independent and identically distributed (iid) random variables with
normal distribution N(0, 𝜎2). We define a new random sequence based on the Metropolis-Hastings
accept/reject step as

𝑦𝑛 = ℎ(𝑥𝑛, 𝑦𝑛−1) =
{
𝑥𝑛 with probability 𝑒−Relu(𝑥𝑛−𝑦𝑛−1 )

𝑦𝑛−1 otherwise
(5)

for 𝑛 > 0 and 𝑦0 = 𝑥0. The conditional probability distribution, for 𝑛 > 0, is

𝑓𝑌𝑛 |𝑋𝑛 ,𝑌𝑛−1 (𝑦𝑛 |𝑥𝑛, 𝑦𝑛−1) = 𝛿(𝑦𝑛 − 𝑥𝑛)𝑒−Relu(𝑥𝑛−𝑦𝑛−1 ) + 𝛿(𝑦𝑛 − 𝑦𝑛−1)
(
1 − 𝑒−Relu(𝑥𝑛−𝑦𝑛−1 )

)
. (6)

We are interested to calculate the (static) distribution of the 𝑦𝑛 sequence for large values of 𝑛. From

𝑓𝑌𝑛 (𝑦𝑛) =
∫

𝑑𝑥𝑛 𝑑𝑦𝑛−1 𝑓𝑋𝑛
(𝑥𝑛) 𝑓𝑌𝑛−1 (𝑦𝑛−1) 𝑓𝑌𝑛 |𝑋𝑛 ,𝑌𝑛−1 (𝑦𝑛 |𝑥𝑛, 𝑦𝑛−1) , (7)

we conclude that 𝑌𝑛 ∼ N(−𝜎2, 𝜎2) for large 𝑛. The acceptance rate is then∫
𝑑𝑥𝑛𝑑𝑦𝑛−1 𝑓𝑋𝑛

(𝑥𝑛) 𝑓𝑌𝑛−1 (𝑦𝑛−1)𝑒−Relu(𝑥𝑛−𝑦𝑛−1 ) = erfc(𝜎/2) . (8)

The left panel in Fig. 5 illustrates erfc(𝜎/2) and also the simulation values of acceptance rate
plotted against 𝜎. For later use, let us calculate the asymptotic form of the acceptance rate. From
the asymptotic behavior of the complementary error function, we conclude that for large 𝜎,

− log(accept rate) = 1
4
𝜎2 + O(log(𝜎)) . (9)

We now study the autocorrelation in the 𝑦𝑛 sequence defined as

𝑅[𝑛] = E
(
𝑦𝑘 + 𝜎2

) (
𝑦𝑛+𝑘 + 𝜎2

)
(10)

(for 𝑘 large enough). The autocorrelation function can be calculated asymptotically for large 𝑛;
the expression is lengthy, and we do not reproduce it here. The middle panel in Fig. 5 shows the
(normalized) autocorrelation in 𝑦𝑛 for several values of𝜎. The decay of the autocorrelation function
is sub-exponential, in agreement with the corresponding asymptotic expression shown by dashed
lines. For a fraction of points, rough estimates of uncertainties in determining the autocorrelation
are shown with error bars.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal with poor scaling? Javad Komĳani

0 1 2 3 4
σ

0.0

0.2

0.4

0.6

0.8
accept rate

erfc(σ/2)

0 1 2 3 4
σ

10−2

10−1

100

accept rate

erfc(σ/2)

0 100 200
n

10−5

10−3

10−1

R
[n

]/
R

[0
]

σ

2

1

0.5

0.25

0 25 50 75 100

[log(1 + n)]2

10−5

10−3

10−1

R
[n

]/
R

[0
]

σ

2

1

0.5

0.25

0 250 500 750 1000
n× nblocks

10−5

10−3

10−1

R
[n

]/
R

[0
]

nblocks

1

4

16

64

0 25 50 75 100

[log(1 + n× nblocks)]
2

10−5

10−3

10−1

R
[n

]/
R

[0
]

nblocks

1

4

16

64

Figure 5: Acceptance rate (left panel) and normalized autocorrelation function (middle and right panels) for
the toy model introduced in Sec. 4.1. The dashed lines show the asymptotic expression of the autocorrelation
function. In the right panel, the block-updating procedure is used for several numbers of blocks and 𝜎 = 2.

We aim to modify the model to decrease the autocorrelation in the 𝑦𝑛 sequence. We implement
a method that we call block updating. First, we assume that 𝑥𝑛 is obtained by adding 𝑛blocks

iid normal variables with mean 0 and variance 𝜎2/𝑛blocks as 𝑥𝑛 =
∑𝑛blocks

𝑏=1 𝑥
{𝑏}
𝑛 . Similarly, we

decompose 𝑦𝑛 as 𝑦𝑛 =
∑𝑛blocks

𝑏=1 𝑦
{𝑏}
𝑛 . Then, instead of proposing independent values of 𝑥𝑛 at each

step, we divide each step to 𝑛blocks substeps. At each substep, we draw a new value for one block of
𝑥𝑛, i.e., for 𝑥 {𝑏}𝑛 , and propose it to update 𝑦

{𝑏}
𝑛 :

𝑦
{𝑏}
𝑛 = ℎ

(
𝑥
{𝑏}
𝑛 , 𝑦

{𝑏}
𝑛−1

)
. (11)

Because the blocks are independent, the problem can be reduced to having 𝑛blocks independent copies
of the original problem with reduced variance 𝜎2/𝑛blocks. As the number of blocks increases,
the reduced variance decreases and consequently the acceptance rate increases (at the price of
splitting each step into 𝑛blocks substeps or having 𝑛blocks copies). From equation (9) one may
conclude that we do not gain any advantages because the probability of getting a completely fresh
vector (𝑦{1}𝑛 , · · · , 𝑦{𝑛blocks}

𝑛 ) compared to (𝑦{1}
𝑛−1, · · · , 𝑦

{𝑛blocks}
𝑛−1 ), in which all blocks are replaced with

proposed ones, does not change asymptotically because

𝑛blocks log erfc
(

𝜎

2√𝑛blocks

)
= 𝜎2 + O(log(𝜎)) (12)

when 𝜎2/𝑛blocks is large enough. However, the block-updating procedure has a significant effect on
the autocorrelation in 𝑦𝑛.

There are two competing aspects in the block-updating procedure. On the one hand, as 𝑛blocks

increases, the outputs of consecutive substeps get more correlated because we update only a block
of the data at each substep. On the other hand, the acceptance rate increases for each substep, which
in general reduces the autocorrelation in the output. The effects of these two competing aspects can
be seen in the right panel of Fig. 5, which illustrates the autocorrelation in 𝑦𝑛 with 𝜎 = 2 for several
blocks: 1, 4, 16, 64. In this panel, to take into account the cost of block updating, i.e., splitting
each step into 𝑛blocks substeps, the argument of the autocorrelation function (the horizontal axis) is
inflated by the number of blocks. We observe that the decay of the autocorrelation function speeds
up as the number of blocks increases from 1, indicating that the effects of the second aspect are
dominant. But, after a certain point, the effects of the first aspect dominate and autocorrelation time
increases. We leave detailed discussions on the integrated autocorrelation time to future work.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal with poor scaling? Javad Komĳani

4.2 Variance of log(𝑞/𝑝), block size, and acceptance rate

There are similarities and differences between the toy model introduced in the previous part
and the main problem investigated in this manuscript. Assuming the distribution of log(𝑞/𝑝) is
normal, one could identify the sequence of proposed values of log(𝑞/𝑝) with 𝑥𝑛 in the toy model
and the sequence of accepted values of log(𝑞/𝑝) with 𝑦𝑛. Then, one could apply the results of
the previous section to study log(𝑞/𝑝) and, to some extent, other quantities. There are three main
differences. Firstly, the distribution of log(𝑞/𝑝) is not necessarily normal. Secondly, all quantities
do not necessarily suffer from the same autocorrelation in the sequence of accepted values of
log(𝑞/𝑝). Finally, the effects of applying a block updating procedure cannot be reduced to having
𝑛blocks independent copies of a similar problem.

We first examine the relation between acceptance rate and volume. As mentioned above, for the
architecture studied here, we observe that the variance of log(𝑞/𝑝) roughly scales with the volume
of the lattice in most cases. Based on this observation and assuming the distribution of log(𝑞/𝑝) is
normal, one can employ the asymptotic relation in (9) and argue that as 𝑉 → ∞,

− log(acceptance rate) ∝ 𝑉 + O(log(𝑉)) . (13)

In practice, however, the above assumptions are not completely correct, and by comparing the
middle and right panels of Fig. 3, one may conclude that dependence of the logarithm of the
acceptance rate on the volume is milder than what equation (13) suggests for large volumes. Even
in some cases, the dependence looks more consistent with scaling by

√
𝑉 rather than 𝑉 , but this

might be because the volume is not large enough to use the asymptotic relation. Moreover, note
that these observations may change once one varies the settings, e.g., by using a different model or
increasing the number of epochs.

Similar to the toy model, we can use the block-updating procedure to improve acceptance rate
and integrated autocorrelation time. To this end, instead of proposing completely independent
configurations at each step, we split the lattice into several blocks, and at each substep, we update
only the prior fields on the corresponding block. Figure 6 shows the effect of block-updating
procedure applied on the largest lattice, 𝐿2 = 642, for three values of ^ close to the critical point
of theory. The circle, cross, and square points show the acceptance rate for 1, 4, and 16 blocks,
respectively. As expected, the acceptance rate improves as we increase the number of blocks.

Our primary investigation shows that the block-updating procedure introduced here also im-
proves the autocorrelation in various quantities. We leave this discussion to another work.

5. Summary and outlook

In this manuscript, we reviewed coupling flows as one of the widely use building blocks to
construct NF architectures. Inspired by effective field theories, we presented a new transformation
called PSD flow. With a new architecture that employs a PSD-flow layer and (in total) 4 coupling-
flow layers, we investigated lattices up to 642 sites. Although the new architecture allows us to
increase the lattice size, the model’s acceptance rate deteriorates at large volumes in a fashion
similar to what was observed in Ref. [7].

To investigate the behavior of the acceptance rate as a function of the volume of the lattice,
we introduced a toy model and discussed how one could handle the poor acceptance rate and long

9



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
1
9

Generative models for scalar field theories: how to deal with poor scaling? Javad Komĳani

20 40 60
L

10−3

10−2

10−1

100

ac
ce

pt
an

ce
ra

te
κ

0.66 0.67 0.68

Figure 6: Effects of block updating on acceptance rate for three values of ^ close to the critical point. The
circle, cross, and square points show the acceptance rate for 1, 4, and 16 blocks applied on the largest lattice.

integrated autocorrelation time of the toy model by block updating. Based on the similarities
between the toy model and the problem at hand, we proposed that a block-updating procedure can
be employed to handle the poor scaling of the acceptance rates for large lattices.

We are extending our studies to other theories, e.g., gauge theories, and applying the PSD flow
to these theories. We are also exploring variants of the PSD flow. Moreover, we are investigating
the effects of the block-updating procedure on various quantities related to the scalar field theory.

References

[1] M. Luscher, Commun. Math. Phys. 293, 899 (2010), arXiv:0907.5491 [hep-lat] .

[2] I. Kobyzev, S. J. Prince, and M. A. Brubaker, IEEE Transactions on Pattern Analysis and
Machine Intelligence 43, 3964 (2021).

[3] G. Papamakarios et al., Journal of Machine Learning Research 22, 1 (2021).

[4] S.-H. Li and L. Wang, Physical Review Letters 121 (2018).

[5] M. S. Albergo, G. Kanwar, and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019) .

[6] M. S. Albergo et al. (2021), arXiv:2101.08176 [hep-lat] .

[7] L. Del Debbio, J. M. Rossney, and M. Wilson, Phys. Rev. D 104, 094507 (2021) .

[8] D. Boyda et al., in 2022 Snowmass Summer Study (2022) arXiv:2202.05838 [hep-lat] .

[9] M. Srednicki, Quantum field theory (Cambridge University Press, 2007).

[10] J. A. Gregory and R. Delbourgo, IMA Journal of Numerical Analysis 2, 123 (1982) .

[11] R. Delbourgo and J. A. Gregory, IMA Journal of Numerical Analysis 3, 141 (1983) .

[12] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, (2019), arXiv:1906.04032 .

10

http://dx.doi.org/10.1007/s00220-009-0953-7
http://arxiv.org/abs/0907.5491
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://dx.doi.org/10.1109/TPAMI.2020.2992934
http://jmlr.org/papers/v22/19-1028.html
http://dx.doi.org/10.1103/physrevlett.121.260601
http://dx.doi.org/10.1103/PhysRevD.100.034515
http://arxiv.org/abs/2101.08176
http://dx.doi.org/10.1103/PhysRevD.104.094507
http://arxiv.org/abs/2202.05838
http://dx.doi.org/10.1093/imanum/2.2.123
http://dx.doi.org/10.1093/imanum/3.2.141
https://arxiv.org/abs/1906.04032
http://arxiv.org/abs/1906.04032

	Introduction
	Background and review of widely used architectures for NF
	Designing new architectures for normalizing flows
	Effective action and power spectral density
	A new architecture

	Variance in log(q/p), acceptance rate, and poor scaling at large volumes
	Toy model
	Variance of log(q/p), block size, and acceptance rate

	Summary and outlook

