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1. Motivation

The Monte Carlo method is an important tool for the investigation of the non-perturbative

nature of quantum field theories with unknown analytical results. However, it is difficult to obtain

a high accuracy result when the sign problem occurs. Several approaches have been proposed to

evade the sign problem, as reviewed in Ref. [1].

The path optimization method (POM) [2, 3], also called the sign-optimized manifold [4, 5],

utilizes machine learning to find the optimal path which maximally weakens the sign problem. The

POM has been applied to several models [2, 4, 6–15]. The POM works well in a small system,

such as finite-density 0 + 1-dimensional QCD [10]. On the other hand, the neural network requires

gauge-fixing or gauge-invariant inputs in a larger system to reduce the sign problem, as confirmed

in two-dimensional U(1) gauge theory with complex coupling [13]. The average phase factor, an

indicator of the sign problem, does not improve unless the gauge is fixed. In contrast, the gauge-

invariant input, i.e., the plaquette input successfully improves the average phase factor without

gauge fixing. It is important to employ a neural network that respects the symmetry of the target

theory. A similar idea has been adopted as a part of the lattice gauge equivariant convolutional

neural network [16]. Although we have overcome the failure of the POM for a gauge theory with

a large degree of freedom, further development is desirable to approach a realistic system with a

large volume.

We perform a feasibility study for the POM, such as a gauge covariant neural network and

approximation of the Jacobian computation in the learning process. A gauge covariant neural

network respects the gauge symmetry [17], as the gauge invariant input does. In the gauge covariant

neural network, a Stout-like smearing function is employed to construct the neural network, which

is gauge covariant by definition. We also test the reduction of the numerical cost of the Jacobian,

which is O(#3) for a system with the degrees of freedom # . The Jacobian is computed only in the

final step of the configuration generation and the measurement, while ignored in the learning part. It

significantly reduces the cost with less control of the neural network. We verify the approximation

of the Jacobian in the learning part does not spoil the precision of the simulation result. Part of our

results has been reported in Ref. [15].

2. Method

The path optimization method utilizes a neural network to suppress the sign problem. It

deforms the contour of the path integral on the complexified variable plane, keeping the integral

unchanged due to Cauchy’s theorem. The complexification of the gauge field is �` (=) → A` (=) =

�` (=) + 8I` (=), �` (=), I` (=) ∈ R. The imaginary part of the complexified variable I` (=) is tuned

via the neural network. The neural network consists of three layers: the input layer, the hidden

layer, and the output layer. The variables on the input layer are denoted by C8 as a one-dimensional

array. We employ a link variable of the gauge field *` (=) := exp(860�` (=)) for C8, which will be

modified to the complexified links U` (=) := exp(860A` (=)) by the neural network. The variables

on the hidden and output layers are denoted by H 9 and I: , which are determined using an activation
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function � such that

H 9 = �
(

F
(1)
98
C8 + 1

(1)
9

)

,

I: = l:�
(

F
(2)

: 9
H 9 + 1

(2)

:

)

, (1)

where the indices 8, 9 , : run from 1 to #input, #hidden, and #output, respectively. #hidden is taken to

be proportional to #vol. The activation function is the hyperbolic tangent in our case. F, 1, and l

are neural network parameters, optimized using the loss function. Our loss function F quantifies

enhancement of the average phase factor such that

F [I] =

∫

3#input C |48\ (C ) − 1|2 |� (C) 4−( (C ) |, (2)

where \ (C) is the phase originated from the Jacobian � (C) of the input and complexified variables

and the action (: exp(8\ (C)) = � (C) exp(−((C)) / |� (C) exp(−((C)) |. The expectation value of the

observable O is given by

〈O〉 =
〈O48\ 〉pq

〈48\ 〉pq

, (3)

〈O〉pq =
1

/

∫

D*
[

O |� 4−( |
]

U∈C
, (4)

which has the same mean value as that without the path optimization, and has a reduced statistical

error if the sign problem is improved by the path optimization.

The path optimization always works in principle, because the neural network can approximate

any function in arbitrary precision proved by the universal approximation theorem [18, 19]. In

practice, however, it sometimes requires an enormous computer time. We confirmed it in the

two-dimensional U(1) gauge theory with a complex coupling [13]. While the neural network

with the link variable input never improved the sign problem, the neural network with the gauge

invariant input, instead of the gauge-variant input of the link variables, can improve the sign problem

significantly. For the gauge invariant object, we construct the plaquette on the input layer and pass

it to the hidden layer. The hidden layer, then, respects the gauge symmetry by construction in (1).

As an alternative approach, we investigated the efficiency of the gauge-covariant neural net-

work [17], which also respects the gauge symmetry. It utilizes the Stout-like smearing as the

gauge-covariant function.

U
(;+1)
` (=) = 48,

(;)
` (=) U

(;)
` (=), (5)

,
(;)
` (=) =

∑

a≠`

(

d
(;)
+ P

(;)
`a (=) + d (;)

− P
(;)
`a

−1
(=)

)

, (6)

P`a (=) = U` (=) Ua (= + ˆ̀) U−1
` (= + â) U−1

a (=), (7)

where ; = 1, ..., #smear. d
(;)
± ∈ C is a neural network parameter. Notice that this gauge covariant

neural network has a residual connection. It may have better control of the vanishing gradient

problem.

The bottleneck of these approaches in the POM is the Jacobian calculation, which costs O(#3)

for the degrees of freedom # . We tested the efficiency of an approximation � = 1 in the learning

3
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Figure 1: The average phase factor by the gauge-covariant neural network at V = 0.58 on 4 × 4 lattice

as a function of the neural network iteration [15]. Those by the gauge-invariant plaquette input and the

gauge-variant link input to the POM are also plotted [13].
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Figure 2: Comparison of the volume scaling of the average phase factor by the gauge-covariant neural

network [15] with those of the gauge invariant plaquette input to the POM and the naive reweighting

method [13] at V = 0.58 on 4 × 4 – 12 × 12 lattices.

process of the neural network, keeping the exact Jacobian calculation in the configuration generation

and measurements. It provides a drastic reduction of the numerical cost for the neural network,

O(#3) to O(1). The disadvantage of this approximation is less control of the sign problem. The

enhancement of the average phase factor is lowered, and the statistical error of the observable

increases. It is necessary to confirm if the � = 1 approximation in the learning process does not

significantly affect the observable error.

3. Results

We test the improvements for the POM, i.e., the gauge covariant neural network and the

approximation of the Jacobian in the learning process by the two-dimensional U(1) gauge theory

with a complex gauge coupling V = 1/62
0
∈ C,

( = −
V

2

∑

=

(

%12(=) + %12(=)
−1
)

. (8)
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Figure 3: The average phase factor by the POM using the gauge invariant input with and without Jacobian

in the learning process at V = 0.58 on 4 × 4 lattice [15].
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Figure 4: Imaginary part of plaquette expectation values by the POM with and without Jacobian in the

neural network as well as by the naive reweighting method at V = 0.58 on 4 × 4 lattice [15].

The sign problem is caused by the imaginary part of V. We generated 50000 gauge configurations

by the Hybrid Monte Carlo method. The Adam optimizer [20] with the learning rate of 10−3 and

the decay rate of 0.99 is used for the neural network. The batch normalization [21] with the batch

size of 1000 is also employed to stabilize the learning process. We set the number of the hidden

layer being proportional to the lattice volume. The statistical error is estimated by the Jackknife

method, binning 250 trajectory data.

Figure 1 represents the average phase factor of the path optimization with the gauge-covariant

neural network [15]. For comparison, we also plot the results of the POM using the gauge-invariant

plaquette input and the gauge-variant link input [13]. As the neural network iteration proceeds, the

average phase factor by the gauge covariant neural network quickly increases, indicating the sign

problem is reduced well. A similar result is obtained by the POM using the gauge invariant input,

though that using the gauge variant input does not enhance the average phase factor. Our results

suggest the gauge symmetry plays a crucial role in the neural network.

Figure 2 shows the volume dependence of the average phase factors. The naive reweighting

method gives a steep decrease in the average phase factor toward the thermodynamic limit. It

becomes milder by use of the gauge covariant neural network and the POM with the gauge invariant
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input. Notice that the number of neural network parameters of the gauge-covariant neural network

is smaller than that of the POM with the gauge invariant input, which seems to cause a lower

enhancement of the average phase factor by the gauge-covariant neural network.

Figure 3 is the average phase factor obtained by the POM using the gauge invariant input with

and without � = 1 approximation in the learning process. The POM with the exact Jacobian calcu-

lation leads to faster enhancement of the average phase factor than that with � = 1 approximation.

However, the difference becomes negligible after the 2000 neural network iterations. The tininess

of the difference is also confirmed for an observable. Figure 4 presents the imaginary part of the

plaquette expectation value. Although all results agree with the exact value [22–24], the POM

with the gauge invariant input gives a well suppressed statistical error, compared with the naive

reweighting method. The use of � = 1 approximation does not significantly increase the statistical

error. The difference is 1% in this case. Our result quantitatively shows the � = 1 approximation in

the learning process is efficient and does not increase the statistical error significantly in our setup.

4. Conclusion

We explored the gauge-covariant neural network [17] and approximation of the Jacobian in

the learning process for the path optimization of the gauge theory. For the gauge-covariant neural

network, we find a large enhancement of the average phase factor, though the enhancement does

not reach that of the gauge invariant input [13]. It is still important, however, to perform a similar

test in the non-abelian theory, for which the gauge covariant neural network is applicable easily.

The approximation of the Jacobian in the learning process leads to a significant reduction of the

numerical cost without spoiling the data quality of the result. The statistical error becomes larger

due to less control of the sign problem, but the increase is 1% in our case. We may have better

control by a combination of the learning process with and without the exact Jacobian.

We apply these improvements to the POM for non-abelian theories, such as SU(2) and SU(3).

Our improvements are helpful for control of the sign problem with acceptable costs. It is also

interesting to test our improvements for the path optimization of the other theoretical models.
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