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1. Introduction

Sign problems plaguing classical Monte-Carlo sampling techniques have precluded quantitative
understanding of the large quark-chemical-potential regime of quantum chromodynamics (QCD),
relevant e.g., for relativistic heavy-ion collisions or neutron and quark stars. Techniques to overcome
the QCD sign problem include reweighting, Majorana and Meron Cluster algorithms, stochastic
quantization and complex Langevin dynamics, Taylor expansion, analytic continuation, and path
deformation and complexification, see Refs. [2, 3] for recent reviews.

In contrast, quantum-computation and simulation techniques do not suffer from sign problems.
They offer a promising route toward the inaccessible regime of the QCD phase diagram by directly
quantum simulating lattice gauge theories (LGTs), see, e.g., Refs. [1, 4–15]. However, thermal i.e.
mixed, as opposed to pure, quantum states are naïvely ‘unnatural’ for quantum computers, making
simulations of thermal systems an extensively researched field, which are addressed by a variety of
techniques, see e.g., Refs. [16–20].

One promising route to quantum computing thermal systems is the thermal pure-quantum-
(TPQ-) state formulation of statistical mechanics [21]. While originally developed without quantum
technology in mind, this ansatz offers a promising route to simulating quantum systems at finite
temperature and chemical potential, enabling estimations of thermal expectation values of a large
class of observables from only a single properly prepared pure state in the thermodynamic limit [22,
23]. Canonical TPQ states are obtained from a Haar-random state evolved in imaginary time [21],

∣𝛽, 𝑁⟩ ≡ 𝑒−
𝛽

2 𝐻 ∣𝜓𝑅⟩ . (1)

Here, 𝛽 is the inverse temperature, 𝑁 the system size, 𝐻 the Hamiltonian of the system, and ∣𝜓𝑅⟩ is
a (pseudo-) Haar-random state of the underlying Hilbert spaceH. One obtains thermal expectation
values of low-degree polynomials of local operators through the stochastic average over 𝑟 TPQ
realizations (denoted by ⟪⋯⟫𝑟 ):

⟨𝑂⟩𝛽 ≈
⟪ ⟨𝛽, 𝑁 ∣𝑂∣𝛽, 𝑁⟩ ⟫𝑟
⟪ ⟨𝛽, 𝑁 ∣𝛽, 𝑁⟩ ⟫𝑟

, (2)

where in the thermodynamic limit, i.e., 𝑁 →∞, only a single TPQ state suffices [21].

2. Physical thermal pure quantum states

The physical Hilbert space of gauge theories is often a small subset of a larger Hilbert space, i.e.,
H𝐺 ⊂ H, where ∣𝜓⟩ ∈ H𝐺 is physical only if 𝐺𝑛∣𝜓⟩ = 𝑔phys∣𝜓⟩. Here, 𝐺𝑛 is the (local) Gauss’s law
operator that commutes with the Hamiltonian, 𝑔phys is the eigenvalue associated with the physical
sector (𝑔phys = 1 for the case of Z2 LGT considered later), and 𝑛 labels a lattice site. Because of
these local constraints, Eqs. (1-2) do not apply to LGTs unless ∣𝜓𝑅⟩ is also restricted to the physical
Hilbert space, or a penalty term is incorporated in the (P)TPQ-state construction, i.e.,

∣𝛽, 𝑁⟩phys ≡ 𝑒−
𝛽

2 𝐻 ∣Ψ𝑅⟩ , (3)

where 𝐻 ≡ 𝐻 + ∑𝑛 𝑓 (𝐺𝑛), and 𝑓 (𝐺𝑛) is chosen such that unphysical components are penalized
during imaginary-time evolution [24, 25]. This latter approach is what is investigated in this work.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
2
9

Phase Diagrams of Gauge Theories with Thermal Pure Quantum States Connor Powers

!!"#/% QGR

|Ψ$⟩ |&, (⟩

0

0

(a)

(b)

$+ % $+$(0) %, ', (

$' !!)$* $+ !)$*

H

...

.

..

x,y

(c)

Ramsey Interferometry
&,( )*+,

O
ne

La
ye

r

Figure 1: (a) PTPQ-state preparation circuit. (b) Random-state preparation sub-circuit structure, see Ref. [26]
for details. (c) Ramsey interferometry sub-circuit required for the calculation of non-equal time correlation
functions. H is a Hadamard gate. Note that the final time-evolution block in the interferometry circuit can
be replaced by a 𝑍 rotation of the ancilla qubit for further simplification [28].

A high-level overview of a circuit for preparing PTPQ states on quantum computers is sum-
marized in Fig. 1(a), including a standard sub-circuit in Fig. 1(b) to efficiently prepare a (pseudo-)
Haar-random state [26]. The system is imaginary-time evolved with the application of 𝑒−𝛽𝐻/2.
Since [𝐺𝑛, 𝐻] = 0, one can separate the imaginary-time evolution into 𝑒−𝛽𝐻/2, followed by Gauss’s
law enforcing 𝑄𝐺 ≡ 𝑒−𝛽∑𝑛 𝑓 (𝐺𝑛)/2. Finally, thermal observables can be measured as prescribed by
Eq. (2), and a Ramsey interferometry circuit (orange), shown in Fig. 1(c), allows the computation
of thermal non-equal time correlation functions [27].

3. Thermal phase diagram of Z1+1
2

To illustrate the approach and without loss of generality, we focus on a simple prototype model, Z2

LGT in 1+ 1 spacetime dimensions (Z1+1
2 ), a case where classical simulations allow benchmarking

the algorithm for small systems. The Z1+1
2 Hamilltonian is

𝐻 = 1
2𝑎

𝑁−2
∑
𝑛=0
(𝑐†

𝑛𝜎̃
𝑧
𝑛𝑐𝑛+1 +H.c.) +𝑚

𝑁−1
∑
𝑛=0
(−1)𝑛𝑐†

𝑛𝑐𝑛 − 𝜖
𝑁−2
∑
𝑛=0

𝜎̃𝑥
𝑛 , (4)

where 𝑐†
𝑛 (𝑐𝑛) are fermionic creation (annihilation) operators, and 𝜎̃𝑧

𝑛 and 𝜎̃𝑥
𝑛 are Pauli spin operators

realizing the Z2 link and electric-field operators, respectively. 𝑁 , 𝑎, 𝑚, and 𝜖 are lattice size and
spacing, fermion mass, and electric-field coupling, respectively. Gauss’s law operator is given
by 𝐺𝑛 ≡ 𝜎̃𝑥

𝑛 𝜎̃
𝑥
𝑛−1𝑒

𝑖 𝜋Q𝑛 where Q𝑛 ≡ 𝑐†
𝑛𝑐𝑛 + [(−1)𝑛 − 1]/2 is the fermion charge. We work with

open boundary conditions. Gauss’s law is enforced by adding ∑𝑛 𝑓 (𝐺𝑛) = 𝜆∑𝑛(1 − 𝐺𝑛) to the
Hamiltonian, where 𝜆 is taken to be large compared with other mass scales in the problem.
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Figure 2: Chiral phase diagram for Z1+1
2 LGT with staggered fermions with 𝑁 = 6 and 𝜆/𝑚 = 4, calculated

with PTPQ states with random-circuit depth 𝑑 = 20. Results are averaged over 𝑟 = 10 PTPQ-state realizations,
and error bars denote statistical uncertainty. Figure is adopted from Ref. [1].

Figure 2 shows the chiral phase diagram of the model for 𝑁 = 6 lattice sites. We plot the chiral
condensate ⟨Ψ̄Ψ⟩ ≡ 1

𝑁
⟨∑𝑁−1

𝑛=0 (−1)𝑛𝑐†
𝑛𝑐𝑛⟩, computed with PTPQ states. A Haar-random circuit

depth of 𝑑 = 20 is used, along with the Gauss’s law penalty coefficient 𝜆/𝑚 = 4, and results are
obtained from an average over 𝑟 = 10 PTPQ realizations. Similar to QCD, chiral symmetry is broken
at low temperatures and chemical potential, while at large temperatures and densities it is restored.
Side panels show the zero temperature and density limits, respectively, along with comparison with
an exact computation (solid lines). A sharp transition is anticipated at 𝑇 = 0 (in the thermodynamic
limit), while the finite-temperature transition is displaying crossover behavior.

The approach also allows the computation of non-equal time correlation functions of thermal
states, relevant e.g., to estimate transport quantities of the Quark-Gluon-Plasma (QGP) created in
relativistic heavy-ion collisions. Because they involve matrix elements of thermal states separated
in real time, even at zero quark chemical potential they are difficult to compute using Monte-Carlo
methods which are restricted to euclidean spacetime. In contrast, real-time evolution is most
natural for quantum computers. Using the Ramsey interferometry scheme shown in Fig. 1(c), one
can realize the quantum-mechanical superposition of states separated in real time through the use
of an ancilla qubit [27].

As an example, in Fig. 3 we present results of the thermal correlator 𝐶𝑛(𝑡) ≡ ⟨[ 𝑗𝑛(𝑡), 𝑗0(0)]⟩𝛽
with 𝑗𝑛(𝑡) ≡ 𝑒𝑖𝐻𝑡 𝑗𝑛𝑒

−𝑖𝐻𝑡 and 𝑗𝑛 ≡ 𝑖
2𝑎 [𝜎

+
𝑛 𝜎̃

𝑧
𝑛𝜎
−
𝑛+1 − H.c.] evaluated using PTPQ states for two

different temperatures. The PTPQ-states results (symbols) reproduce the exact results (solid lines)
well, even with a single 𝑟 = 1 realization for 𝑇/𝑚 = 0.2 and 𝑟 = 20 realizations for 𝑇/𝑚 = 0.4,
consistent with expectations that the statistical error should increase with temperature [21]. To
reach the zero-frequency limit (𝜔 → 0), to compute e.g., the thermal conductivity via 𝜎𝛽,𝜇 ∼
lim
𝜔→0

𝑎/𝜔 ∫ 𝑑𝑡 𝑒𝑖𝜔𝑡 ∑𝑛𝐶𝑛(𝑡), significantly larger lattices are required than achievable by classical
emulation of the quantum device. This makes even this simple model an attractive target for
near-future quantum computation.
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Figure 3: Non-equal time correlation functions 𝐶0(𝑡) and 𝐶4(𝑡) at 𝑁 = 6 fermionic sites, 𝜇/𝑚 = 0.5, and
𝜆/𝑚 = 4. Results from a single PTPQ state are shown for 𝑇/𝑚 = 0.2, and data from 𝑟 = 20 PTPQ states are
averaged over at 𝑇/𝑚 = 4. Figure is adopted from Ref. [1].

4. Considerations for NISQ era and far-term circuit implementation

Noisy intermediate-scale quantum (NISQ) devices involve limited algorithmic complexity and are
prone to a multitude of errors, depending on device type and the problem investigated. The PTPQ-
state computation of thermal properties of a LGT, exemplified in this talk, consists of two basic
components: (pseudo-) Haar-random-state preparation, tried and proven with existing hardware,
as well as non-unitary imaginary-time evolution. Figure 4(a) illustrates what may be expected
from (pseudo-) Haar-random-state preparation on an actual device, here a simulator of IBM’s
ibmq_sydney device via Qiskit [29], using standard circuits [26] but with (classically emulated)
exact imaginary-time evolution. The results are seen to be robust to these errors.

In contrast, imaginary-time evolution is a less established and more challenging aspect of this
proposal because quantum computers do not directly provide non-unitary operations. Nevertheless,
techniques for non-unitary operations are anticipated to be important in physics problems and are
under intense investigation. An important example is ground- or excited-state preparation where one
may find advantage over e.g., adiabatic state preparation or variational algorithms [17]. At present,
there exists no consensus as to the optimal imaginary-time evolution algorithm, with proposed
algorithms either involving approximate evolution and classical optimization or ancilla degrees of
freedom. Therefore, their capabilities in terms of scalability and efficiency for near- versus far-term
implementation vary widely, see e.g., Refs. [17, 30, 31].

Common to most imaginary-time evolution algorithms, like in unitary real-time evolution,
is Trotterization of the evolution operator 𝑆(𝛽) = 𝑒−𝛽𝐻/2. In the following, we will work with
first-order product formulas,

𝑆(𝛽) ≡ [𝑆(Δ𝛽)]𝑁𝑇 ≡ [
Γ

∏
𝛾=1

𝑒−𝐻𝛾Δ𝛽]
𝑁𝑇

, (5)
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Figure 4: (a) Chiral condensate ⟨Ψ̄Ψ⟩ as a function of 𝜇/𝑚 with simulated device noise [29] applied
to the random-state preparation sub-circuit. (b) Effects of Trotter error. Inset: Multiplicative Trotter error
∣∣𝑀(Δ𝛽)∣∣ using first-order product formulas [32], as well as the mean trace distance 𝐷̄𝑇𝑟 between 𝑒−Δ𝛽𝐻 ∣Ψ𝑅⟩
and 𝑆(Δ𝛽)∣Ψ𝑅⟩, are plotted as functions of imaginary time-step size Δ𝛽 at 𝜇/𝑚 = 4. (c) Impacts of bit-flip
(X) effective Hamiltonian errors at various relative error strengths 𝛼/𝑚. Inset: Relative accuracy 𝐴rel as a
function of 𝛼/𝑚 with various error types at 𝜇/𝑚 = 3. All results are with 𝑑 = 20, 𝑟 = 10, 𝜆/𝑚 = 8,𝑁 = 6,
𝑇/𝑚 = 0.1, and averaged over 𝑟 = 50 random error terms with strength 𝛼/𝑚. Figure is adopted from Ref. [1].

where 𝑁𝑇 = 𝛽/(2Δ𝛽) is the number of Trotter steps of length Δ𝛽 of the interval 𝛽/2, 𝐻𝛾 are
Γ (local) components of the Hamiltonian 𝐻. Since no Trotter error is expected from separately
implementing the penalty term 𝑄𝐺 , this term is not considered here. Errors from Trotterization are
independent of device performance.

Figure 4(b) summarizes the effects of Trotterization, estimated by varying the number of
Trotter time steps for finite-temperature chiral-condensate calculations at 𝑇/𝑚 = 0.1. For percent-
level agreement, 𝑁𝑇 ≳ 100 is required, while at 𝑁𝑇 = 10, the chiral phase transition is qualitatively
visible. The inset contains the multiplicative Trotter error as a function of imaginary-time step
size, 𝑀(Δ𝛽) ≡ 𝑆(Δ𝛽)/𝑒−Δ𝛽 𝐻 − 𝐼, and the mean trace distance 𝐷̄𝑇𝑟 between 𝑒−Δ𝛽𝐻 ∣Ψ𝑅⟩ and
𝑆(Δ𝛽)∣Ψ𝑅⟩ averaged over 𝑟 = 10 PTPQ states. The analytical bound on the multiplicative Trotter
error obtained in Ref. [32] is also plotted. Next, motivated by phase-flip, bit-flip, and cross-talk
errors commonly seen in NISQ-era devices, and to estimate effects of device miscalibration and
errors with minimal algorithmic bias, we consider the so-called unitary errors, parameterized by
an effective Hamiltonian 𝐻′ = 𝐻 + 𝐻𝛼

err, where 𝐻𝛼
err represents 1- or 2-local errors applied to each

qubit, with randomized weights bounded by a strength parameter 𝛼. Our error model is given
by 𝐻err = ∑2𝑁−1

𝑙=0 𝐾𝛼
𝑙 𝜎𝑙, where 𝜎𝑙 ∈ {𝜎𝑥

𝑙 , 𝜎
𝑧
𝑙
, 𝜎𝑧

𝑙
𝜎𝑧
𝑙+1} and 𝐾𝛼

𝑙 is drawn uniformly from [−𝛼, 𝛼].
There is no distinction between fermionic sites or gauge links because the errors apply to all qubits
equally. The results of this study for bit-flip (X) errors are shown in Fig. 4(c), where we display
the chiral condensate obtained for varying strengths of 𝛼. The inset shows the relative accuracy
𝐴rel ≡ 1 − ∣⟨Ψ̄Ψ⟩𝑃𝑇𝑃𝑄(𝛼) − ⟨Ψ̄Ψ⟩∣/∣⟨Ψ̄Ψ⟩∣ for phase (Z), bit-flip (Z), and correlated phase errors
(ZZ) as a function of 𝛼/𝑚.

Finally, we discuss scaling and resource requirements of the proposal. It is sufficient to
prepare pseudo-Haar-random states (as opposed to true Haar-random states), which is possible with
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relatively shallow, polynomial-depth circuits and will not be discussed further. To estimate the
imaginary-time evolution cost, one may consider the QITE algorithm [17], based on approximating
each non-unitary evolution component in Eq. (5) with a unitary evolution of similar or greater non-
locality, using a classical optimization procedure. This approximation introduces another source of
error, in addition to the Trotter error. While a more detailed analysis can be found in Refs. [1, 17],
we just note in summary that the QITE circuit complexity is exponential in the correlation length
of the state acted on. While the QITE algorithm starts at an infinite-temperature state with zero
correlation length, the cost of QITE may become inhibiting e.g., at phase transitions, illustrating
the importance of developing more efficient non-unitary evolution quantum algorithms.

5. Conclusion

In this talk, we discussed a novel approach toward quantum computing finite-temperature phase
diagrams of lattice gauge theories, to eventually overcome the infamous sign-problem of finite-
density QCD, with important implications for the understanding of the quark-gluon plasma in
relativistic heavy-ion collision, e.g., in the search for the QCD critical point,or for elucidating the
composition the interior of neutron stars. Another important goal is to quantify QCD transport
through computation of thermal non-equal time correlation functions. While quantum computing
the QCD phase diagram is still a far-term endeavor, we demonstrated how progress can be made
using a simple but relevant prototype model to compute the thermal phase diagram as well as
non-equal time correlation functions by developing relevant quantum algorithms. Our approach is
another motivation for the development of efficient non-unitary evolution algorithms on quantum
computers, an important subject generating significant interest across different fields. We expect that
quantum information sciences will make important contributions, conceptually and computationally,
to understanding the structure of strongly coupled gauge theories at finite temperature and chemical
potential, with significant interdisciplinary synergies expected e.g., in quantum thermodynamics
and condensed-matter physics.
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