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In lattice QCD, the trace of the inverse of the discretized Dirac operator appears in the disconnected
fermion loop contribution to an observable. As simulation methods get more and more precise,
these contributions become increasingly important. Hence, we consider here the problem of
computing the trace tr(D '), with D the Dirac operator. The Hutchinson method, which is
very frequently used to stochastically estimate the trace of a function of a matrix, approximates
the trace as the average over estimates of the form xH D~1x, with the entries of the vector x
following a certain probability distribution. For N samples, the accuracy is O(1/VN). In recent
work, we have introduced multigrid multilevel Monte Carlo: having a multigrid hierarchy with
operators D¢, Py and Ry, for level £, we can rewrite the trace tr(D™!) viaa telescopic sum with
difference-levels, written in terms of the aforementioned operators and with a reduced variance.
We have seen significant reductions in the variance and the total work with respect to exactly
deflated Hutchinson. In this work, we explore the use of exact deflation in combination with the
multigrid multilevel Monte Carlo method, and demonstrate how this leads to both algorithmic and
computational gains.
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1. Introduction

In lattice quantum chromodynamics (LQCD), the extraction of some observables requires the
computation of matrix traces [1] of the form tr( /(D)) with D the Dirac operator on the lattice,
and f(D) = (I'D)~! with " some Dirac structure e.g. I' = I's. This appears, for example, in the
calculation of disconnected diagrams [1].

There are deterministic algorithms for the approximate computation of such traces, among
which falls hierarchical probing [2, 3]. From the stochastic side, on which we focus in this work, a
well known method is the use of the Hutchinson estimator [4]

N
(F(A)) = 2 D) FD). n
i=1

The entries x; in the vectors x ineq. (1) are random identically and independently distributed
(i.i.d.) with expected values E[x;] = 0 and E[x;x;] = ¢;;. The variance V[xH £(D)x], in terms
of the entries of the matrix f(D), is determined by the probability distribution (p.d.f.) used for
drawing the components of the vector x.

With V(x* f(D)x) having a theoretical value that depends on f(D) and the p.d.f. used in
drawing x, the variance of the Hutchinson estimator in eq. (1) decreases as \/Lﬁ When the accuracy
required in the computation of tr( (D)) is quite high, the Hutchinson method becomes too costly.
There are multiple variance reduction techniques that can be applied to the Hutchinson estimator,
in particular deflation [5], which we discuss in section 2.

A new variance reduction technique recently developed in [6], which we briefly describe in
section 3, uses a multilevel approach via a multigrid hierarchy in order to “distribute" the variance
over different multigrid levels, and with this offloading some (and in some cases most) of the
computational work to coarser levels.

In this work, we discuss the use use of exact deflation on the multigrid multilevel Monte Carlo
method from [6]. We focus on f(D) = D~!, with D the Wilson-Schwinger operator coming from
a discretization of the (1+1)-dimensional Schwinger model on the lattice.

2. Deflated Hutchinson
If Z, noise is used for drawing the random vectors used in the Hutchinson estimator, then [7, 8]
1
VD x) = §||offdiag(D-1 + D)% )

Now, for a given matrix A € C™*", there is a connection between the Frobenius norm of A and
its singular values

n n n
IAIG = " 0? = lloffdiag(A)|} = Y o= > |4l 3)
i=1 i=1 i=1

In LQCD simulations, where the smallest singular values of D are typically very small—and
those of D! are thus large—, the last term in eq. (3) can be discarded, and we see that the smallest
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singular modes of D are the ones dominating the variance. Deflating those modes can then lead to
a significant reduction in the variance of the Hutchinson estimator.

Exactly deflated Hutchinson [5] has been extensively used in LQCD, e.g. [9-11]. With the
singular value decomposition (SVD) [12] of the Dirac operator, D = UXV# and its inverse
D~! = VE~'UH, exact deflation is done via the orthogonal projector

=UU7, )

where the columns of Uy, contain the k largest right singular vectors of D!, i.e., the k smallest left
singular vectors of D. The trace tr(D~!) can then be split as

tr(D™") = (D~ = D)) + tr(D~'1T). (5)

From the discussion following eq. (2), the first term in eq. (5) will have a reduced variance,
so we can compute that term via the Hutchinson estimator investing less estimates. For the second
term, we can write

(D) = (D' URUY) = w(UZ D 'Uy) = e (UF Vi E), (6)

where the last step requires a pre-computation of the smallest k left singular vectors of D to high
accuracy.

Better algorithms are typically known for eigenvalue problems, compared to singular value
problems. The Dirac operator being I's-Hermitian [13], i.e. (I'sD)¥ = I'sD, we can extract the
singular vectors of D from the eigenvectors of Q = I'sD

Q = XAX" = D = (I'sXsign(A))abs(A) XY, (7

with X the eigenvectors of Q, A the diagonal matrix containing the eigenvalues of Q, U =
I'sXsign(A) the left singular vectors of D and V = X its right singular vectors. The matrix
abs(A), which corresponds to the singular values of D, is simply the element-wise absolute value
of A, and sign(A) is such that A = sign(A)abs(A).

3. Multigrid Multilevel Monte Carlo

The variance reduction technique introduced in [6] makes use of a multigrid hierarchy. We
explain now what a multigrid hierarchy is, its relation to inexact deflation, and its use in multigrid
multilevel Monte Carlo.

3.1 Multigrid

Already with the basic Hutchinson estimator, with or without deflation, LQCD simulations
need to solve linear systems of equations of the form Dx = b. The Dirac operator D is typically
ill-conditioned, with a spectrum that makes it hard for traditional methods such as Krylov-based
iterative solvers to find the solution x with tolerable effort. In current LQCD simulations, multigrid
solvers [14, 15] are the state of the art when dealing with Dx = b [16-19].

In a two-level multigrid solver, a smoother is applied at the original grid (i.e. the finest level),
followed by a coarse-grid correction. The smoother, which typically consists of a few iterations
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of a method such as Gauss-Seidel, Jacobi or GMRES, removes high-frequency components of the
error, and the coarse-grid correction serves as a complement to the smoother, in charge of dealing
with those modes of the error that have not been dealt with by the smoother. In a more than
two-level multigrid method, the coarse grid correction is obtained by applying the two-level method
recursively. The operator at level ¢ of the resulting multigrid hierarchy is labeled as D,. There is
an operator that allows the transfer of data from level ¢ to € + 1, known as the restriction operator
R¢; moving data in the opposite direction is done via the interpolation operator Pp.
Mathematically, one iteration of two-level multigrid can be described by the sequence

r—b-Dx
xX—x+S§ gvl)r (pre-smoothing, v, iterations)

r — b—Dlx
(®)

X —x+PD; 'Rir (coarse-grid correction)
re—b- D1x

X—x+S§ 5"2)1’ (post-smoothing, v; iterations)

where r is the residual, and the operator Sl(,v) is the smoother at level ¢, with v the number of
iterations of the smoother. There are different ways of constructing the coarse-grid operator D»,
e.g. the Petrov-Galerkin approach D, = Ry D P;.

If the matrix D is still too large, the application D, '(R;r) in eq. (8) can be further computed
via another two-level method. This can be put up in a recursive manner, leading to a multilevel
multigrid solver.

The interpolator P, can be built in a geometric or algebraic way. In the former, P, is based
on the geometry of the lattice and information of an underlying infinite-dimensional operator prior
to discretization . In the latter, P, is rather constructed via the information contained in the matrix
D¢. Due to the random nature of the gauge links in LQCD, algebraic multigrid is necessary to
have an effective linear solver. Furthermore, the aggregation-based construction of P, from D, in
lattice QCD relies on a concept known as local coherence [20], which states that many low modes
of D, can be approximately obtained from just a few low modes of the same operator, by looking at
the local behaviour of those few modes. The construction of the multigrid hierarchy that we follow
here is the one presented in [21].

3.2 Inexact Deflation and Multigrid Multilevel Monte Carlo

The orthogonal projector in eq. (4) is built using exact singular vectors u;. If for computational
efficiency these are only computed approximately, the computation of tr(D~'T) = tr(D~'UU*) =
tr(U*D~'U) requires k extra inversions in eq. (5). A cheaper alternative is to use inexact deflation
as in [22]. For this, the projector

=U(VEDU)'VID ©)
is used. This oblique projector splits the trace, using D~! = (1 = IT)D~' + TID!, as

(D) =te(D™! = U (VEDU)T'VE) + (VDU 'V UY) (10)
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The second term in eq. (10) now requires only k£ matrix-vector multiplications with D acting on the
k deflation vectors u; and the inversion of the small k X k matrix V]fl DUy, but no solves with the
large matrix D. The first term in eq. (10) is expected to have a reduced variance, similar to the case
of the orthogonal projector (4) in exact deflation.

In the multigrid context we know from local coherence [20], that the range of the projection P
is composed of many approximate low modes of D;. This fact is used in [22] to construct inexact
deflation with the projector IT; = Py (P{'DP,)"'P{'D = P|D;'P{'D.

Based on the general multilevel Monte Carlo approach [23], the multigrid multilevel Monte
Carlo method proposed in [6] applies this construction recursively to obtain the splitting (note that
PIP,=1)

L-1
w(D™) = 3w (D;! = PeDy PH) +u(D})), an
=1
where ¢ runs over the different levels in the multigrid hierarchy, with £ = L being the coarsest
level, and D; = D. The goal in eq. (11) is to have a sequence of difference-level operators
M, = Dgl - PngJrl1 Pf with reduced variance when computing their traces, and a last term
tr(DZl) with large variance but cheap to compute.

The expression in eq. (11) has been used in [6] to compute tr(D‘l) in the case of the (1+1)-
dimensional Schwinger model, in particular. Results for a 128 lattice are displayed here in fig. 1,
where m is the mass parameter of the Dirac operator, cost is given in FLOPS, and eps is the relative
tolerance used in the stopping condition. The multigrid multilevel Monte Carlo method presented

. w10 Schwinger, eps = 0.001
—&—multilevel MC
3l —#—defl. Hutch w/o eigen comp. | |
25+ 1
2 L
2
o
1.5+ 1
1 L <
0.5F b
ol \ T
-0.13031332 -0.1329 -0.1325 -0.132

Figure 1: Cost versus mass parameter m in the computation of the trace tr(D~!), with eps = 1073, for a
(1+1)-dimensional Wilson-Schwinger operator D and a lattice of size 1282. A four-level multigrid hierarchy
is employed. Figure taken from [6].

in [6] displays insensitivity to conditioning, in the example illustrated here in fig. 1, and outperforms
a highly tuned exactly deflated Hutchinson by a factor of around 12 for the most ill-conditioned
case (i.e. for the smallest value of m). Note that we did not include the work for computing the
eigenvectors used in exactly deflated Hutchinson in fig. 1.
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4. Deflated Multigrid Multilevel Monte Carlo

In fig. 1, deflated Hutchinson outperforms multigrid multilevel Monte Carlo for m = —0.132
and m = —0.1325. We can revert that via two improvements:

* skipping a level

* applying exact deflation on every difference level in multigrid multilevel Monte Carlo

4.1 Skipping a level

From the numerical experiments performed in [6] for the Schwinger model, the number of
nonzero elements in D is approximately the same as in D,. This renders the second level almost
as expensive as the first one, which we take into account in this section.

Assuming a four-level multigrid hierarchy, and skipping the second level in the trace decom-
position in eq. (11), we can then write

(D7) = (D' = P1P2AS PP + (A7 - P3A PE) +tr(AL ) (12)

The first term in eq. (12) might see an increased variance with respect to the first or second
terms in the summation in eq. (11), but we might see a gain in total cost due to avoiding inversions
with D5 in the multilevel trace expansion.

4.2 Exact deflation on difference levels

Following the discussion in section 2, we can apply a similar exact deflation approach on each
difference level in multigrid multilevel Monte Carlo. For this, we compute the largest singular
vectors for the difference-level operator

M :=D;' - P,D;} P} (13)

We can reduce the computation of singular triplets to eigenpairs in a way to what we outlined
in section 2. We can construct Hermitian difference-level operators using the relations

ripe =Pt PHTL =T PE (THH =1L, (THHTL =1, (14)

which come from the “spin-preserving” algebraic multigrid construction discussed in [17] and
which imply
Q¢ :=TiD, = DITL = 0F.

With these relations at hand, we obtain a Hermitian operator which we can use for the indirect
extraction of the singular vectors of My:

¢ —1t -1 pHL -1 -1 1+l pH -1 -1 pH
Je=MTs =D, 15 = PeDy PiTs = Qp = PeDyp TV Pl = Qp = PeQp, Py (15
Then, in the same way as in section 2, we extract singular vectors of M, via eigenvectors of J,

Je = XAX" = M, = XAXPT! = U = Xsign(A), S = abs(A), V = ['sX (16)
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4.3 Results

We have implemented the computation of tr(D~!) via deflated multigrid multilevel Monte
Carlo in Python!. We have performed a numerical test with the exact same Schwinger matrix used
in [6]. We take mg = —0.1320 here, and we run on a single core of a node with 44 cores Intel(R)
Xeon(R) CPU E5-2699 v4 @ 2.20GHz. We seek the trace with a relative tolerance of 10~%, with
a relative residual norm of 10~ !2 for the linear solves on each sample. When using exact deflation,
the relative tolerance in the eigensolver is 10™, and 10! for inexact deflation. When calling the
eigensolver on Jg, see eq. (16), the linear solves have a relative tolerance of 10~!2 in exact deflation
while they stop at 10~3 when computing vectors for inexact deflation. The results are presented in
table 1.

Method Deflation type | Nr. defl. vectors | eig.+direct trace total
MGMLMC none - - 276,826.66 | 276,826.66
MGMLMC+skip none - - 130,208.2 130,208.2
1,024 595.51 102,838.06 | 103,433.57
Hutchinson exact 2,048 3,337.336 | 102,060.58 | 105,397.916
4,096 11,597.91 | 78,727.95 90,325.86
8,192 77,765.96 | 74,980.76 | 152,746.72

512 & 510 3,633.41 9,903.29 13,536.70

MGMLMC+skip 1,024 & 510 5,878.38 7,619.27 13,497.65

exact
2,048 & 510 13,731.51 7,359.11 21,090.62
512 & 510 2,274.88 10,073.90 12,348.78
MGMLMC-+skip inexact 1,024 & 510 | 437846 | 7.588.69 | 11,967.15

2,048 & 510 9,959.23 7,266.92 17,226.15

Table 1: Execution times (in seconds) when computing tr(D~!) via various methods described in earlier
sections. In the third column, which displays the number of deflation vectors used, MGMLMC+skip has
only two difference levels due to skipping the second one. The fourth column presents the times to obtain
the deflation vectors and in the case of inexact deflation it includes the extra time due to inversions (see
the paragraph right before eq. (9) on the need for these inversions), while the fifth column corresponds to
the times for computing tr(D~'). The last column shows the total execution time i.e. for eigensolving plus
computation of tr(D1).

Instead of a cost model based on FLOPS, as in [6], we have opted for time measurements here.
To reduce overheads due to the interpreter in Python, we measure execution times of very specific
operations: D¢, deflations, Py, P? and axpy operations.

As has already been reported in [6] and displayed here in fig. 1, exactly deflated Hutchinson
clearly outperforms MGMLMC when my = —0.132. We revert this behaviour here via deflation on
MGMLMC, as illustrated in table 1. In that table, MGMLMC+skip represents skipping the second
difference level, which is of great computational benefit because in the multigrid hierarchy for the
matrix used here, the number of nonzero elements in D and D, are roughly the same. Skipping the
second difference level impacts negatively the variance, and the sample size needed for convergence
on the difference level going from £ = 1 to £ = 3 increases with respect to the original two levels

1The code can be found here.
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when no skipping is done, but this increase in the sample size is small enough that we still see a
large gain when skipping a level, as can be seen from the first two rows in table 1.

Skipping a level is not enough for MGMLMC to outperform exactly deflated Hutchinson,
hence we resort to deflation on MGMLMC. As stated before, when eigensolving for exact deflation
in the MGMLMC case, i.e. when computing eigenpairs of the operator J¢ in eq. (16), we use a
tolerance of 10~ for the eigensolver and of 10~!2 for the solves appearing in M, in each call of J,
which happens at each iteration of the eigensolver. We can see in table 1 that, for exactly deflated
MGMLMC, the growth in execution time stops being linear at some point, and this is due to asking
for a tolerance 10~° in the eigensolver, which leads to the orthogonalizations within the eigensolver
starting to dominate. This is less pronounced for inexactly deflated MGMLMC, where we ask for
a tolerance of 10~! from the eigensolver.

This dominance of the orthogonalizations in the eigensolver is expected when a very large
number of deflation vectors is set, and we can see it already in exactly deflated Hutchinson in
table 1. The size of the L3 cache in the machine where we performed our numerical experiments
is 55 MB. A matrix of size 32,768 X 128 in double precision, which is the case of the matrix
containing the deflation vectors when we deflate 128 of them, has a size of 64 MB, and this is
too large to sustain coherence with the largest cache level. When using 128 deflation vectors,
though, the multigrid solves are still considerably more expensive than the projections associated
to deflation, especially because the Python installation that we use has been compiled with BLAS
enabled, and we get BLAS3 performance for these projections.

These projections affect not only the eigensolver, but also the computation of the trace. In
table 1, in the case of exactly deflated Hutchinson, we see practically no gain when going from
1,024 to 2,048 deflation vectors, stemming from the deflations going from 11.5% to 18.7% of the
overall execution time of the trace, respectively. The same happens in deflated MGMLMC when
going from 1,024 & 510 to 2,048 & 510, regardless of the type of deflation.

The best result is, as expected, MGMLMC with the combined use of skipping a level difference
plus inexact deflation. With 1,024 & 510 deflation vectors, this method outperforms the best case
of exactly deflated Hutchinson by a factor of 7.5 in the overal execution time. This gain comes from
the need of less deflation vectors for reducing the variance of each level difference, this coming in
turn from the inexact deflation already performed by those difference levels. Furthermore, having
less deflation vectors benefits the performance of the method computationally as well, as we have
previuosly described.

5. Outlook

A first possible improvement for deflated multigrid multilevel Monte Carlo is to switch to an
eigensolver more in accordance with the eigenproblem at hand. As described in section 4.2, the
computation of the singular vectors is done via eigensolving with the operator J, = le -PcQ, +11 Pf .
This could be converted into a generalized eigenvalue problem with a non-Hermitian operator, which
can then be treated via e.g. Jacobi-Davidson in a perhaps more efficient manner. We are currently
working on implementing and testing inexactly deflated MGMLMC in the context of lattice QCD.
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