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Tensor renormalization group (TRG) has attractive features like the absence of sign problems
and the accessibility to the thermodynamic limit, and many applications to lattice field theories
have been reported so far. However it is known that the TRG has a fictitious fixed point that
is called the CDL tensor and that causes less accurate numerical results. There are improved
coarse-graining methods that attempt to remove the CDL structure from tensor networks. Such
approaches have been shown to be beneficial on two dimensional spin systems. We discuss how
to adapt the removal of the CDL structure to tensor networks including fermions, and numerical
results that contain some comparisons to the plain TRG, where significant differences are found,
will be shown. The detailed discussion of this work is given in ref. [1].
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1. Introduction

The tensor renormalization group (TRG) [2] has been very successfully applied to spin and
gauge models in low dimensions 1. It allows for high precision calculations of quantities including
the free energy using very modest resources—see the recent review and references therein ref. [4].
For practical applications, it is necessary to truncate the number of values that the tensor indices take
to a maximal number called the bound dimension. The algorithm appears to be convergent when the
values of observables, calculated with some desired precision, stabilize after the bound dimension
reaches a sufficiently large value. However, as one approaches a critical point, the required bond
dimension may become very large, and the algorithm becomes less efficient. This has been traced
to the fact that the standard TRG procedure can drive the coarsened tensor network to an artificial
fixed point that is referred to as the corner double line (CDL) tensor [5] 2. To maintain a proper
renormalization group flow improved algorithms have been developed, such as the tensor network
renormalization (TNR) [7], the loop-TNR [8], and the gilt-TNR [9] algorithm. In such algorithms,
entanglement filtering methods and further optimization steps are incorporated into the network
coarsening procedure to eliminate the CDL fixed point.

2. Tensor network representation for Wilson–Majorana fermions

An equivalence between the Ising model and a lattice action for Wilson–Majorana fermions
has been shown for two dimensional honeycomb and square lattices [10]. Here we show a tensor
network representation of the Wilson–Majorana partition function on a square lattice. While the
equivalence has been shown for several choices of boundary conditions, throughout this paper, we
assume the periodic and antiperiodic boundary conditions for the spatial and temporal directions,
respectively.

The action of the Wilson–Majorana fermion model is given by
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with two component Majorana spinors 𝜂 ≡ (𝜂1, 𝜂2)T and 𝜒 ≡ (𝜒1, 𝜒2)T. The forward, the backward,
and the symmetric difference operators are defined by 𝜕, 𝜕∗, and 𝜕S = (𝜕 + 𝜕∗)/2, respectively. The
masses of the fermions are functions of the reverse temperature 𝜅:

𝑚𝜂 =
2
𝜅

(√
2 − 1 − 𝜅

)
, 𝑚𝜒 = −2

𝜅

(√
2 + 1 + 𝜅

)
. (2)

The critical point of the system occurs for vanishing 𝑚𝜂 , is given by 𝜅c =
√

2 − 1, and corresponds
to the critical point of the two dimensional Ising model on a square lattice 𝛽c = tanh−1 𝜅c.

1The higher order TRG [3] can be used for higher dimensional systems, albeit numerical costs strongly depend on
the dimensionality.

2The fixed point structure of the higher order TRG is also discussed in ref. [6].
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By using a representation of 𝛾 matrices given by

𝛾1 = 𝜎1 =

(
0 1
1 0

)
, 𝛾2 = 𝜎3 =

(
1 0
0 −1

)
, 𝐶 = −𝑖𝜎2 =

(
0 −1
1 0

)
, (3)

the partition function can be expressed as

𝑍 =
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where the bosonic tensor𝑇 , whose elements are numerical values, and the Grassmann valued tensor
𝐺 are defined by
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and
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Note that, with the representation of 𝛾 matrices (3), the Majorana condition turns out to be

𝜂 = 𝜂T𝐶 = (𝜂2,−𝜂1) (7)

together with the same condition on 𝜒. Also, in eq. (5), linear combinations of the spinor compo-
nents, e.g.

𝜂 =
1
√

2

(
𝜂1 + 𝜂2

−𝜂1 + 𝜂2

)
, (8)

are employed for simplicity.
To evaluate eq. (4) on a large space-time volume, one will need to generalize the usual

coarse-graining algorithms to allow for blocking of both bosonic and Grassmann tensors. The first
application of the TRG to fermion systems was given in refs. [11, 12], and the applications in the
context of lattice quantum field theory were in refs. [13–15].

3. Numerical results

In this section, numerical results that are obtained by the normal Grassmann TRG and by
Grassmann versions of the improved coarse-graining methods, the loop-TNR [8] and the gilt-
TNR [9], are shown.
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To demonstrate the equivalence to the Ising model, fig. 1 shows the specific heat of the Wilson–
Majorana fermion system. Here the specific heat is calculated by taking the second numerical
derivative of the free energy. One can clearly observe a logarithmic growth of the peak height of
the specific heat at the critical point 𝜅c =

√
2 − 1. The regions 𝜅 < 𝜅c and 𝜅 > 𝜅c correspond to the

Z2 symmetric (high temperature) and the broken (low temperature) phases, respectively.
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Figure 1: Specific heats of the Wilson–Majorana fermion system.

Figure 2 shows the relative errors of the free energy obtained by the plain Grassmann TRG
and the improved ones. The linear system size is set to 𝐿 = 1024 for this comparison. Clearly
the Grassmann loop-TNR result shows an exponential improvement of accuracy as compared to
the plain Grassmann TRG, and the accuracy reaches better than single precision at a relatively
small bond dimension like 10. The Grassmann gilt-TNR shows a similar accuracy to the vanilla
Grassmann TRG at lower bond dimensions. At larger bond dimensions, the accuracy of the
Grassmann gilt-TNR depends on the hyperparameter 𝜖gilt 3. Optimal 𝜖gilt depends on the model,
physical parameters, and even on the bond dimension. In our experiments, 𝜖gilt = 10−6 seems like
a good choice near the criticality in this model for large bond dimensions.

The renormalization group flow of singular values obtained by the plain Grassmann TRG and
the improved algorithms are shown in figs. 3–5. In the figures the singular values are normalized by
the largest one at each iteration step, and the horizontal axis is the number of iterations. Notice that
the number of iterations 𝑖 and the number of lattice sites𝑉 , which have been compressed to a single
tensor, are related by 𝑉 = 2𝑖 4. Clearly the fixed point structure as evidenced by the behavior of
the singular values is not reproduced both on and off critical point for the vanilla Grassmann TRG
algorithm. This is due to a contamination by short range information that is not properly removed
by this algorithm 5. By contrast, the improved methods show trivial fixed point structures off critical

3The hyperparameter 𝜖gilt determines how drastically one truncates the entanglement spectra. The detail is discussed
in refs. [9, 16].

4Note that the number of lattice sites is reduced by 1/2 through a single iteration step.
5On account of the contamination by the short range information, the criticality should shift to a pseudo point when
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Figure 2: Relative errors of the free energy at the criticality. 𝐿 = 1024.

𝜅 = 0.9999𝜅c and 1.0001𝜅c; in the high temperature (symmetric) phase the number of significant
singular values is one while in the low temperature (broken) phase there are two degenerate singular
values. The fixed point structure is nontrivial only at the criticality, where one can find a scale
invariance of the hierarchical structure of the singular values that remains the same against the
increasing iteration number. This fact shows that only the improved algorithms are capable of being
interpreted as implementing a true renormalization group transformation.
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Figure 3: Singular values obtained by Grassmann TRG at 𝜅 = 0.9999𝜅c (left), 𝜅 = 𝜅c (middle), and
𝜅 = 1.0001𝜅c (right). The bond dimension is 64.

we use the normal Grassmann TRG.
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Figure 4: Singular values obtained by Grassmann loop-TNR at 𝜅 = 0.9999𝜅c (left), 𝜅 = 𝜅c (middle), and
𝜅 = 1.0001𝜅c (right). The bond dimension is 16.
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Figure 5: Singular values obtained by Grassmann gilt-TNR at 𝜅 = 0.9999𝜅c (left), 𝜅 = 𝜅c (middle), and
𝜅 = 1.0001𝜅c (right). The bond dimension is 64, and 𝜖gilt = 10−6.

4. Conclusion

In this paper, we have shown improved coarse-graining methods adapted to the case of Grass-
mann valued tensor networks describing fermionic lattice quantum field theories. Both the Grass-
mann versions of loop-TNR and gilt-TNR show improved accuracy for quantities such as the free
energy in comparison to the normal Grassmann TRG. Also, the fixed point structure of the Wilson–
Majorana model obtained by the improved algorithms reproduces the known result for the Ising
model. (See refs. [7–9] for the analyses on the Ising model.)
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Of course, the performance of the improved coarse-graining methods depend on the details
of the model. Thus another interesting target would be the staggered Thirring model which was
studied using fermion bag methods in ref. [17] 6. This model has a critical phase and is similar
to the classical XY model. Such cases have large numbers of internal d.o.f. and will show more
complicated fixed point structure. Indeed, precise investigations on the classical XY model have
been reported with the use of the loop-TNR [18, 19]. Thus applying the improved methods to the
staggered Thirring model would be a legitimate direction to gain some new insights.
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