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Lattice computations in the Hamiltonian formulation have so far mainly focused on staggered
fermions. In these proceedings, we study Wilson fermions in the Hamiltonian formulation and
propose a new method to determine the resulting mass shift. As a benchmark study, we examine
the one-flavour Schwinger model with Wilson fermions and a topological 𝜃-term using matrix
product states. Wilson fermions explicitly break chiral symmetry; thus, the bare mass of the
lattice model receives an additive renormalization. In order to measure this mass shift directly,
we develop a method that is suitable for the Hamiltonian formulation, which relies on the fact
that the vacuum expectation value of the electric field density vanishes when the renormalized
mass is zero. We examine the dependence of the mass shift on the lattice spacing, the lattice
volume, the 𝜃-parameter, and the Wilson parameter. Using the mass shift, we then perform the
continuum extrapolation of the electric field density and compare the resulting mass dependence
to the analytical predictions of mass perturbation theory. We demonstrate that incorporating the
mass shift significantly improves the continuum extrapolation. Finally, we apply our method to
the same model using staggered fermions instead of Wilson fermions and compare the resulting
mass shift to recent theoretical predictions.
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1. Introduction

The Kogut-Susskind staggered formulation of lattice fermions [1] has so far been the most
common choice in studies of lattice gauge theories in the Hamiltonian formulation. An alternative
approach are Wilson fermions [2], for which the doublers acquire a mass proportional to the
inverse lattice spacing and thus are completely removed when the lattice spacing is taken to zero.
The implementation of Wilson fermions generalises trivially to any number of spatial dimensions.
However, Wilson fermions break chiral symmetry explicitly, which generates an additive mass
renormalization. The knowledge of this mass shift allows for a direct examination of the mass
dependence of observables and for following a massless renormalization scheme. However, this
shift has so far been only determined for lattice gauge theories in the Lagrangian formulation.

In these proceedings, we propose a method to determine the mass shift of Wilson fermions
in the Hamiltonian formulation. As a benchmark model, we use the Hamiltonian formulation of
the Schwinger model in the presence of a topological 𝜃-term [3]. This model describes quantum
electrodynamics in 1+1 dimensions, and the 𝜃-term is related to a background electric field [4]. The
𝜃-term induces a sign problem [5] for standard lattice Monte Carlo simulations; we therefore use
the tensor-network technique of matrix product states (MPS) [6], which circumvents this problem.

The rest of this article is organized as follows. In Sec. 2, we provide the theoretical background
of the Schwinger model both in the continuum and on the lattice. Section 3 describes the methods
used, including MPS and the new method to determine the mass shift. Our results are presented
in Sec. 4 before concluding in Sec. 5. Finally, we note that our method of computing the mass
shift is not restricted to a particular type of lattice fermions. Hence, while the main text focuses on
Wilson fermions, in Appendix A we consider staggered fermions and compute their mass shift in
the Schwinger model to compare it to the recent theoretical predictions in Ref. [7].

2. Theory

In this section, we first review the continuum Schwinger model, including the analytical
prediction for the vacuum expectation value of the electric field density. We then describe the
lattice implementation of Wilson fermions and provide the final lattice Hamiltonian.

2.1 Continuum Theory

In the continuum, the massive Schwinger model [8] for a single fermion flavour including a
topological 𝜃-term can be described by the Hamiltonian density

H = −𝑖𝜓𝛾1 (𝜕1 − 𝑖𝑔𝐴1) 𝜓 + 𝑚𝜓𝜓 + 1
2

(
¤𝐴1 +

𝑔𝜃

2𝜋

)2
, (1)

where the fermionic field 𝜓 is a two-component spinor in 1+1 dimensions and 𝑚 corresponds to its
bare mass. This Hamiltonian is in the temporal gauge, 𝐴0 = 0, hence the gauge field appears only
through 𝐹01 = ¤𝐴1. Further, 𝑔 is the coupling constant between the fermions and the gauge field,
which has units of mass and does not renormalize since the model is super-renormalizable [9, 10].
The 𝜃-term corresponds to a constant background electric field given by 𝑔𝜃/2𝜋 [3, 4, 10, 11]. The
massless Schwinger model has an axial anomaly, which implies that the classical axial symmetry
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𝜓 → 𝑒𝑖𝛾5𝛼𝜓 is no longer a symmetry on the quantum level. Consequently, the 𝜃-parameter is
unphysical in the massless case; hence, observables should not depend on 𝜃 [11, 12].

The observable we consider in our numerical study is the vacuum expectation value of the elec-
tric field density, which was analytically derived for the continuum model within mass perturbation
theory up to order O((𝑚/𝑔)2) in Ref. [10],

F
𝑔

=
𝑒𝛾
√
𝜋

(
𝑚

𝑔

)
sin (𝜃) − 8.9139

𝑒2𝛾

4𝜋

(
𝑚

𝑔

)2
sin (2𝜃), (2)

where 𝛾 = 0.5772156649 is the Euler-Mascheroni constant.

2.2 Lattice Theory

Following Refs. [13, 14], we now derive the lattice version of the Schwinger model with Wilson
fermions, which yields Eq. (1) in the continuum. We start from the free Dirac Hamiltonian,

𝐻free =

∫
𝑑𝑥 𝜓

(
−𝑖𝛾1𝜕1 + 𝑚

)
𝜓, (3)

and use the symmetric lattice derivative, 𝜕1𝜓𝑛 = (𝜓𝑛+1 − 𝜓𝑛−1)/2𝑎, along with
∫
𝑑𝑥 → 𝑎

∑
𝑛,

where 𝑎 is the lattice spacing and 𝑛 is the lattice site index, to arrive at the discretized Hamiltonian

𝐻free
lat = 𝑎

∑︁
𝑛

𝑚lat𝜓𝑛𝜓𝑛 − 𝑖𝜓𝑛𝛾
1
(
𝜓𝑛+1 − 𝜓𝑛−1

2𝑎

)
. (4)

In Eq. (4), we distinguish the lattice mass 𝑚lat from the continuum mass 𝑚. To implement Wilson
fermions [2], we add to Eq. (4) the Wilson term

Δ𝐻Wilson = 𝑟
𝑎2

2

∑︁
𝑛

𝜓𝑛𝜕
2
1𝜓𝑛 = 𝑟

𝑎2

2

∑︁
𝑛

𝜓𝑛

(
𝜓𝑛+1 + 𝜓𝑛−1 − 2𝜓𝑛

𝑎2

)
, (5)

where 𝑟 is the Wilson parameter, and we used the discrete symmetric second derivative. The
resulting mass of the doublers is proportional to 𝑟 [2], and for our simulations we make the standard
choice of 𝑟 = 1. The free lattice Dirac Hamiltonian with Wilson fermions thus reads

𝐻free
lat, Wilson =

∑︁
𝑛

(𝑎𝑚lat − 𝑟)𝜓𝑛𝜓𝑛 + 𝜓𝑛

(
𝑟 − 𝑖𝛾1

2

)
𝜓𝑛+1 + 𝜓𝑛

(
𝑟 + 𝑖𝛾1

2

)
𝜓𝑛−1. (6)

Equation (6) has a global𝑈 (1) symmetry,𝜓𝑛 → 𝑒𝑖𝛼𝜓𝑛, and gauging the theory allows for invariance
under local gauge transformations, 𝜓𝑛 → 𝑒𝑖𝛼𝑛𝜓𝑛 and𝑈𝑛 → 𝑒𝑖𝛼𝑛𝑈𝑛𝑒

−𝑖𝛼𝑛+1 . Here, the link operator
𝑈𝑛 is placed on the link between sites 𝑛 and 𝑛 + 1. The electric field operator 𝐸𝑛 is conjugate to
𝑈𝑛, which implies [𝐸𝑛,𝑈𝑛′] = 𝑔𝛿𝑛,𝑛′𝑈𝑛′ . Thus, the resulting interacting lattice Hamiltonian is

𝐻int
lat, Wilson =

∑︁
𝑛

𝜓𝑛

(
𝑟 − 𝑖𝛾1

2

)
𝑈𝑛𝜓𝑛+1 + 𝜓𝑛

(
𝑟 + 𝑖𝛾1

2

)
𝑈†

𝑛𝜓𝑛−1 + (𝑎𝑚lat − 𝑟)𝜓𝑛𝜓𝑛 + 𝑎
𝐸2
𝑛

2
. (7)

In the Hamiltonian lattice formulation, it is convenient to use dimensionless quantities in units
of the coupling 𝑔. The dimensionless form of the field operators is given by 𝐿𝑛 = 𝐸𝑛/𝑔 and
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𝜙𝑛,𝛼 = (−1)𝑛
√
𝑎𝜓𝑛,𝛼. The physical volume in units of the coupling is given by 𝑎𝑔𝑁 = 𝑁/

√
𝑥,

where we defined the dimensionless inverse lattice spacing squared 𝑥 ≡ 1/(𝑎𝑔)2.
The physical part of the Hilbert space is defined as the set of states which obey Gauss’s law,

𝐿𝑛 − 𝐿𝑛−1 = 𝑄𝑛, with the charge operator defined as 𝑄𝑛 ≡ 𝜓
†
𝑛𝜓𝑛 − 1. We use open boundary

conditions (OBC) and hence can solve this constraint explicitly after fixing the left boundary link
to a given input value, 𝑙0 ≡ 𝜃/2𝜋. This parameter 𝑙0 is precisely the dimensionless background
electric field. After fixing 𝑙0, we can express the dimensionless electric field operator as

𝐿𝑛 = 𝑙0 +
𝑛∑︁

𝑘=1
𝑄𝑘 . (8)

To enforce Gauss’s law, we can then substitute the expression for 𝐿𝑛 in Eq. (8) into our Hamiltonian
in Eq. (7). Furthermore, the gauge degrees of freedom in Eq. (7) can be completely eliminated
by applying a unitary transformation, 𝜙𝑛 → ∏

𝑘<𝑛𝑈
†
𝑘
𝜙𝑛 [15]. Using the mapping 𝜙𝑛,𝛼 →

𝜒2𝑛−2+𝛼 allows us then to translate our operators to Pauli spin operators using the Jordan-Wigner
transformation [16], 𝜒𝑛 =

∏
𝑘<𝑛 (𝑖𝜎𝑧

𝑘
)𝜎−

𝑛 , where the ladder Pauli matrices are 𝜎±
𝑛 = 1

2 (𝜎
𝑥
𝑛 ± 𝑖𝜎

𝑦
𝑛 ).

Finally, we make the Hamiltonian dimensionless, 𝑊 = (2/𝑎𝑔2)𝐻int
lat, Wilson, and add a penalty

term, 𝑊 = 𝑊 + 𝜆
(∑𝑁

𝑛=1 𝑄𝑛

)2
, with 𝜆 set to 100. This term enforces zero total charge by increasing

the energy of the states with nonzero total charge. The final dimensionless Hamiltonian reads

𝑊 = 𝑖𝑥(𝑟 − 1)
𝑁−1∑︁
𝑛=1

(
𝜎−

2𝑛𝜎
+
2𝑛+1 − 𝜎+

2𝑛𝜎
−
2𝑛+1

)
+ 𝜆

(
𝑁∑︁
𝑛=1

𝑄𝑛

)2

+ 𝑖𝑥(𝑟 + 1)
𝑁−1∑︁
𝑛=1

(
𝜎+

2𝑛−1𝜎
𝑧
2𝑛𝜎

𝑧
2𝑛+1𝜎

−
2𝑛+2 − 𝜎−

2𝑛−1𝜎
𝑧
2𝑛𝜎

𝑧
2𝑛+1𝜎

+
2𝑛+2

)
+

𝑁−1∑︁
𝑛=1

(
𝑙0 +

𝑛∑︁
𝑘=1

𝑄𝑘

)2

+ 2𝑖
(
𝑚lat
𝑔

√
𝑥 + 𝑥𝑟

) 𝑁∑︁
𝑛=1

(
𝜎−

2𝑛−1𝜎
+
2𝑛 − 𝜎+

2𝑛−1𝜎
−
2𝑛

)
.

(9)

3. Methods

In this section, we first review the MPS algorithm used to find the ground state of the Hamilto-
nian in Eq. (9). Then, we introduce the new method to determine the mass shift by measuring the
mass dependence of the vacuum expectation value of the electric field density.

3.1 Matrix Product States

Matrix product states are a parametric ansatz composed of tensors, with the tensor size limiting
the maximum entanglement that can be present in the state [6]. For OBC, the ansatz is given by

|𝜓⟩ =
∑︁

𝑖1,𝑖2,..,𝑖2𝑁

𝐴
𝑖1
1,𝛼1

𝐴𝑖2
𝛼1,𝛼2 ...𝐴

𝑖2𝑁
𝛼2𝑁−1,1 |𝑖1⟩ ⊗ |𝑖2⟩ ... ⊗ |𝑖2𝑁 ⟩ , (10)

with implicit contraction of the indices 𝛼𝑘 . The maximum value of these contracted indices is
called the bond dimension 𝐷. The physical indices 𝑖𝑛 range over the physical degrees of freedom
on each site 𝑛 and—in our case—can take two possible values corresponding to spin up or down,
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since the states |𝑖𝑛⟩ correspond to spin states. The 𝐴-tensors are the building blocks of the MPS,
which are rank-3 tensors that, upon contraction via the bond indices, form an approximation to the
rank-(2𝑁) tensor of the quantum state. To compute the ground state of the Hamiltonian 𝑊 , we
employ a variational algorithm [17] to minimize the energy 𝐸 = ⟨𝜓 |𝑊 |𝜓⟩ using the ITensors Julia
library [18]. The algorithm optimizes the tensors until the relative change in the energy is below a
certain accuracy 𝜂, which we set to 10−12. Subsequently, we can use the MPS result for the ground
state |𝜓0⟩ to perform measurements of observables, ⟨𝜓0 |𝑂 |𝜓0⟩.

3.2 Method to Compute the Mass Shift

Our goal is to determine the mass shift that arises due to the Wilson term in Eq. (5). For this,
we express the renormalized mass 𝑚𝑟/𝑔 in terms of the lattice mass 𝑚lat/𝑔,

𝑚𝑟

𝑔
=
𝑚lat
𝑔

+ MS, (11)

where the term MS refers to the mass shift in units of the coupling 𝑔.
To compute this mass shift, we exploit the fact that the vacuum expectation value of the

dimensionless electric field density F/𝑔 vanishes when the renormalized mass 𝑚𝑟 is zero. Thus,
we measure F/𝑔 as a function of the lattice mass 𝑚lat/𝑔, as shown in Fig. 1(a). Guided by the
analytical continuum prediction in Eq. (2), we then fit a quadratic function to our data and identify
the term MS in Eq. (11) with minus the value of 𝑚lat/𝑔 for which F/𝑔 = 0. We note that this
method requires simulations at negative values of 𝑚lat/𝑔 and thus is not applicable to standard
lattice Monte Carlo simulations in the Lagrangian formulation due to the sign problem.

To measure F/𝑔 using the MPS algorithm explained in Sec. 3.1, we first use Eq. (8) to calculate
𝐿𝑛 = 𝐸𝑛/𝑔. We only keep links from the center of the lattice to reduce boundary effects that might
be present due to using OBC. The value measured for F/𝑔 is then the mean value of the electric
field on those links. Errors arising from the extrapolation of F/𝑔 to infinite bond dimension 𝐷 and
to infinite inverse lattice spacing 𝑥 are added in quadrature according to Appendix B of Ref. [11].
Unlike in Ref. [11], we explicitly work at fixed finite volume 𝑁/

√
𝑥 and therefore extrapolate only

to infinite bond dimension 𝐷 and infinite 𝑥.

4. Results

In this section, we show our numerical results for the mass shift and its dependence on the lattice
volume 𝑁/

√
𝑥, the lattice spacing 𝑎𝑔, the 𝜃-parameter, and the Wilson parameter 𝑟 . We present the

qualitative behaviour of these dependencies and provide quantitative results where appropriate.
First, we observe that the mass shift strongly depends on the lattice volume 𝑁/

√
𝑥, as shown

in Fig. 1(b). This is due to the presence of finite-size effects for the observable used to calculate
the mass shift, namely the vacuum expectation value of the electric field density F/𝑔, as shown in
Fig. 1(a). However, this dependence becomes negligible for sufficiently large volumes, 𝑁/

√
𝑥 ≳ 40.

Next, we examine the dependence of the mass shift on the lattice spacing 𝑎𝑔 and on the
𝜃-parameter. As shown in Fig. 2(a), the mass shift strongly depends on the lattice spacing, as
expected. Moreover, the mass shift slightly depends on 𝑙0 = 𝜃/2𝜋, but this dependence is shown to
vanish in Fig. 2(b) as 𝑎𝑔 is taken to zero. Note that the mass shift only becomes strictly independent

5
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Figure 1: (a) Electric field density F/𝑔 as a function of the lattice mass 𝑚lat/𝑔, for different volumes 𝑁/
√
𝑥.

Equation (2) indicates that F/𝑔 vanishes at 𝑚𝑟/𝑔 = 0, therefore the intercept with F/𝑔 = 0 (red dashed line)
gives minus the mass shift. (b) Mass shift against inverse volume. The inset plot shows the three points with
the largest volumes; the relative difference in the mass shift for the largest volumes 35 and 40 is ∼ 0.01%.
For the data of both panels, we fix 𝑥 = 10 and 𝑙0 = 0.1 and consider volumes 𝑁/

√
𝑥 between 10 and 40.
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Figure 2: (a) Mass shift (MS) versus lattice spacing 𝑎𝑔 = 1/
√
𝑥 for two values of the background field,

𝑙0 = 𝜃/(2𝜋) = 0.03 and 0.25. The volume 𝑁/
√
𝑥 = 20 is fixed, with 𝑁 ranging from 25 to 90. (b) Mass shift

at 𝑙0 = 0.25 minus mass shift at 𝑙0 = 0.03 as a function of the lattice spacing 𝑎𝑔.

of 𝑙0 once the infinite-volume limit is taken. This is also expected, because the continuum theory
predicts that for 𝑚 = 0 the 𝜃-parameter is unphysical and should not affect any measurement, due
to the axial anomaly. However, the axial anomaly on the lattice is not exact [11], which causes the
slight 𝜃-dependence of the mass shift for large lattice spacings.

Regarding the dependence of the mass shift on the Wilson parameter 𝑟 , we numerically
confirmed that the mass shift is antisymmetric in 𝑟 → −𝑟 . This is due to the spurious symmetry
𝜓 → 𝛾5𝜓, 𝑚lat/𝑔 → −𝑚lat/𝑔, and 𝑟 → −𝑟 of the Hamiltonian in Eq. (7).

Finally, we wish to demonstrate that incorporating the mass shift significantly improves the
continuum extrapolation of the electric field density F/𝑔. Figure 3(a) shows that without incorpo-
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Figure 3: (a) Electric field density F/𝑔 as a function of 𝑙0 = 𝜃
2𝜋 for 𝑚lat/𝑔 = 0, 𝑁 = 32, 𝑥 = 0.6, 𝑁/

√
𝑥 = 40.

Equation (2) indicates that F/𝑔 should be zero at 𝑚/𝑔 = 0 for any 𝑙0 (red dashed line). Without incorporating
the mass shift, the data (green triangles) increasingly deviate from this expectation for increasing 𝑙0, as the
mass shift grows with 𝑙0. (b) Continuum-extrapolated electric field density F/𝑔 as a function of 𝑚/𝑔. We
fixed the volume to 𝑁/

√
𝑥 = 20, the background field to 𝑙0 = 𝜃

2𝜋 = 0.125, and extrapolated to the continuum
limit 𝑎𝑔 → 0 using eight points of 𝑁 between 100 and 300. The theoretical continuum prediction (red line)
comes from mass perturbation theory, see Eq. (2). For small 𝑚/𝑔, where the prediction is valid, the data
incorporating the mass shift, 𝑚/𝑔 = 𝑚lat/𝑔 + MS, (black crosses) follow this result with excellent agreement
and small error bars. The data without incorporating the mass shift, 𝑚/𝑔 ≡ 𝑚lat/𝑔, (green circles) have larger
error bars and mean values that are further away from the continuum result.

rating the mass shift, the lattice data for F/𝑔 deviate from the expectation that F/𝑔 should vanish at
𝑚/𝑔 = 0 for any 𝑙0. This deviation becomes more severe for larger 𝑙0, because the mass shift grows
with 𝑙0. Using our method, we can utilize the condition F/𝑔 ≡ 0 to compute the mass shift in lattice
units (MS) [see Eq. (11)] for certain lattice parameters, thus allowing us to keep the renormalized
mass 𝑚𝑟/𝑔 constant while changing the lattice spacing. For the continuum extrapolation of F/𝑔
at fixed volume, as shown in Fig. 3(b), the incorporation of the mass shift significantly improves
the convergence towards the continuum prediction of mass perturbation theory, both in terms of
decreasing the error bars and in terms of yielding mean values that are consistent with the prediction
for small 𝑚/𝑔. The large error bars for the data without the mass shift can be explained by Fig.
4(a), which demonstrates that data incorporating the mass shift converge faster when taking the
limit 𝑎𝑔 → 0. Indeed, the data with the mass shift in Fig. 4(a) already converge to the continuum
value of F/𝑔 for large values of 𝑎𝑔. In contrast, for the data without the mass shift, the continuum
extrapolation for F/𝑔 strongly deviates from the lattice result obtained at the smallest lattice spac-
ing. The mass shift is shown in Fig. 4(b), which is linear in 𝑎𝑔 to first order and after extrapolating
to 𝑎𝑔 → 0 yields MS = 0.016 ± 0.009 for a fixed volume of 𝑁/

√
𝑥 = 30, which is consistent with

a vanishing mass shift within two standard deviations. This value for MS would be even closer to
zero if the infinite-volume limit is also taken, as can be inferred from Fig. 1(b).

All in all, we can express the renormalized mass 𝑚𝑟/𝑔 in terms of the lattice mass 𝑚lat/𝑔 using
the parametric expression 𝑚𝑟/𝑔 = 𝑚lat/𝑔 + MS(𝑁, 𝑥, 𝜃, 𝑟). In this section, we quantified the mass
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Figure 4: (a) Electric field densityF/𝑔 versus lattice spacing 𝑎𝑔 for 𝑙0 = 0.125, 𝑁/
√
𝑥 = 20, and𝑚𝑟/𝑔 = 0.03

(black crosses) and 𝑚lat/𝑔 = 0.03 (green triangles). A linear fit is sufficient for the black cross data, as it is
expected from non-improved Wilson fermions which have an O(𝑎𝑔) scaling behaviour [19], whereas for the
green triangles we used the following procedure. To approximate F/𝑔 at 𝑎𝑔 → 0, a quadratic, cubic, and
quartic polynomial is fitted and a weighted average of the resulting 𝑦-intercepts is taken with the weights
corresponding to the mean square error of each fit. The error on the 𝑦-intercept for each fit is set according
to Sec. 3.2. The final error is then found by adding the individual errors in weighted quadrature. (b) Mass
shift versus 𝑎𝑔 for 𝑁/

√
𝑥 = 30, 𝑙0 = 0.125 and 𝑁 ranging from 300 to 500. We have approximated the value

at 𝑎𝑔 = 0 using the same fitting procedure as described for the green triangle points in (a).

shift in lattice units, MS, and explored its behaviour as a function of each argument 𝑁 , 𝑥, 𝜃, and 𝑟 .

5. Conclusion

In these proceedings, we developed a new method to determine the mass shift of Wilson
fermions in the Hamiltonian formulation. Using the Schwinger model with a 𝜃-term as a benchmark
model, we studied the dependence of the mass shift on the lattice volume 𝑁/

√
𝑥, the lattice spacing

𝑎𝑔, the 𝜃-parameter, and the Wilson parameter 𝑟 . We found that the mass shift shows a strong
volume dependence for small values of 𝑁/

√
𝑥, but this dependence becomes negligible upon

reaching sufficiently large volumes, 𝑁/
√
𝑥 ≳ 40. The mass shift also strongly depends on the

lattice spacing and is antisymmetric in the Wilson parameter, as expected. Given that the chiral
anomaly is not exact on the lattice, the mass shift has a weak dependence on 𝜃, which vanishes as
𝑎𝑔 goes to zero. We demonstrated that incorporating the mass shift leads to faster convergence of
the continuum extrapolation and results in much smaller errors. In the future, our method could be
applied to various lattice calculations in the Hamiltonian formalism, such as the computation of the
Schwinger boson mass and classical or quantum computations of other lattice field theories in 1+1
and higher dimensions.
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A. Staggered Fermions

Our new method of computing the mass shift is not only applicable to Wilson fermions but also
to staggered fermions [20], as we briefly discuss in this appendix. For the one-flavour Schwinger
model with a 𝜃-term and staggered fermions, Ref. [7] recently showed that this lattice model receives
an additive mass renormalization given by 𝑚𝑟/𝑔 = 𝑚lat/𝑔 + 1/(8

√
𝑥). This prediction was derived

by enforcing a discrete spurious chiral symmetry on the staggered-fermion lattice with periodic
boundary conditions and 𝑚𝑟/𝑔 = 0, which is given by a translation of one site followed by a shift
of 𝜃 by 𝜋. Using our new method of numerically determining the mass shift, we provide a finite-
volume test of this prediction for OBC and find agreement for sufficiently large lattice volumes,
𝑁/

√
𝑥 ≳ 30, as shown in Fig. 5.
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