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especially in baryon-baryon scattering applications, as finite-volume energies can be observed in
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The Lüscher scattering formalism on the 𝑡-channel cut André Baião Raposo

1. Introduction & motivation

In recent years, there has been considerable progress in the determination of two-nucleon and
other two-baryon scattering amplitudes using numerical lattice QCD [1–5]. One of the leading
methods in these calculations is to first extract the finite-volume energy spectrum and subsequently
the scattering amplitudes via the Lüscher formalism and its extensions [6–16]. In such calculations,
each finite-volume energy level constrains or predicts the scattering matrix for all multi-hadron
channels that can physically propagate at that energy.

One limitation in all finite-volume formalisms to date is that they neglect volume effects
associated with 𝑡-channel (or left-hand) cuts.1 This is most obviously a problem when the lattice
calculation predicts energies that are on top of the cut, as recently seen in ref. [3]. The finite-volume
formalism is manifestly not applicable here, leading to predictions of a real-valued K-matrix
(equivalently, a real-valued scattering phase shift) in a region where the latter is known to be complex.

In this proceedings, we present an extension of the original formalism that can be applied on the
left-hand cut. We begin with a brief review of infinite-volume scattering and the standard Lüscher
formalism, in sections 2 and 3, respectively. In section 4, we illustrate how the 𝑡-channel cut becomes
an issue and, in section 5, we briefly describe our approach to a solution, the full details of which
will be presented in a publication (to appear). Conclusions and an outlook are given in section 6.

2. Two-to-two scattering in infinite-volume

We review a few properties of scattering amplitudes in the infinite-volume context, making
no reference yet to the finite-volume formalism. Considering two-to-two elastic scattering of
non-identical mass-degenerate spin-zero particles with physical mass 𝑀, we write the total four-
momentum in a given frame as 𝑃 = (𝐸, 𝑷) and introduce the standard Mandelstam invariants 𝑠 and
𝑡. Mandelstam 𝑠 satisfies 𝑠 = 𝑃2 = 𝐸2 − 𝑷2 = (𝐸★)2, where 𝐸★ denotes the centre-of-mass frame
energy. Note we will use ★ to denote quantities boosted to the centre-of-mass frame.

The scattering amplitude, which we write M(𝑠, 𝑡), can be formally expressed as the sum of
all connected and amputated two-to-two Feynman diagrams, with legs amputated and set on the
mass shell (i.e. with external momenta 𝑝 having 𝑝2 = (𝑝0)2 − 𝒑2 = 𝑀2). This all-orders sum can
be organized by introducing the Bethe-Salpeter kernel, defined as the sum of all connected and
amputated two-to-two diagrams that are two-particle irreducible in the 𝑠-channel2. The amplitude
is then expressible in terms of the Bethe-Salpeter kernels and pairs of dressed propagators of the
scattering scalars, as shown in figure 1. Note that all propagators considered are taken with the
standard 𝑖𝜖 prescription, and all loop momenta are integrated over all components.

It is also instructive to define partial-wave amplitudes according to

M(𝑠, 𝑡) =
∞∑︁
ℓ=0

𝑃ℓ (cos 𝜃★)Mℓ (𝑠) , (1)

1For ref. [17], the issue of the cut may be circumvented by working in the plane-wave basis, but this is not specifically
discussed in those proceedings.

2In other words, the Bethe-Salpeter kernel is built from diagrams that cannot be separated into two pieces by cutting
through two propagators whose momenta sum to the total four-momentum 𝑃 = (𝐸, 𝑷).

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
5
1

The Lüscher scattering formalism on the 𝑡-channel cut André Baião Raposo

Figure 1: (a) Diagrammatic representation of the two-to-two scattering amplitude using Bethe-Salpeter
kernels and dressed propagators. (b) Definition of the Bethe-Salpeter kernel as the sum of all connected and
amputated two-to-two diagrams which are two-particle irreducible in the 𝑠-channel. Dashed lines denote
other particles that might couple to the scattering channels of interest. (c) Definition of the dressed propagator
in terms of bare propagators and self-energy kernels. (d) Definition of the self-energy as the sum of all
one-particle irreducible diagrams.

where 𝑃ℓ is a Legendre polynomial and 𝜃★ is the scattering angle in the centre-of-mass frame,
satisfying sin2(𝜃★/2) = −𝑡/(𝑠 − 4𝑀2).

Using unitarity of the scattering matrix, one can show that the imaginary part of Mℓ (𝑠)−1 is
independent of the details of particle interactions. The real part is then typically parameterized using
the scattering phase shift 𝛿ℓ (𝑠). We may write

ImMℓ (𝑠)−1 = −𝜌(𝑠) Θ(𝐸★ − 2𝑀) , ReMℓ (𝑠)−1 = 𝜌(𝑠) cot 𝛿ℓ (𝑠) ≡ Kℓ (𝑠)−1 , (2)

where 𝜌(𝑠) ≡ 𝑝★

8𝜋𝐸★ is the phase-space factor for non-identical particles, with 𝑝★ ≡ 1
2

√
𝑠 − 4𝑀2

denoting each particle’s centre-of-mass spatial momentum magnitude, and we have defined the
K-matrix Kℓ (𝑠). This leads to the standard form of the partial-wave amplitude

Mℓ (𝑠) =
1

Kℓ (𝑠)−1 − 𝑖𝜌(𝑠)
=

8𝜋𝐸★

𝑝★ cot 𝛿ℓ − 𝑖𝑝★
. (3)

One can also reach these results via the Bethe-Salpeter series of figure 1 if one defines the K-matrix
K by the same series as the amplitude M, but in which all two-particle loops are evaluated with a
principal-value prescription instead of the 𝑖𝜖 prescription.

The relations above hold only for (2𝑀)2 < 𝑠 < (𝐸★
inel.)

2, where 𝐸inel. is the lowest-lying
inelastic threshold coupling to the channel of interest. This fact has received significant attention for
energies above 𝐸inel. (in the form of three-particle finite-volume formalisms [18–22]), but here we
are concerned with the range 𝑠 < (2𝑀)2. For these sub-threshold energies, one can analytically
continue the amplitude by taking −𝑖𝜌(𝑠) → |𝜌(𝑠) | in order to remain on the physical Riemann sheet.
Such an analytic continuation leads to a real-valued scattering amplitude, provided that the K-matrix
is real. When, however, we have a lighter particle coupling to the scattering channel of interest, the
K-matrix partial waves become complex-valued due to a sub-threshold branch cut, the so-called
𝑡-channel or left-hand cut. Before turning to the consequences of the cut, we review the standard
finite-volume formalism of Lüscher and show that a real-valued K-matrix is implicitly assumed in
the sub-threshold analytic continuation, and thus that the formalism is not applicable on the cut.
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Figure 2: Skeleton-expansion representation of the finite-volume correlator 𝐶𝐿 (𝐸, 𝑷), in terms of Bethe-
Salpeter kernels and dressed propagators, as defined in figure 1. The end-cap “blobs” stand for functions
in momentum-space originating from the Fourier transforms of the creation and annihilation operators. As
discussed, one can take the kernels and propagators to be the infinite-volume objects, as the difference between
these and their finite-volume counterparts is exponentially suppressed, and thus only the loops explicitly
shown need to be treated as finite-volume loops.

3. Review of the Lüscher formalism

In this section, we review the derivation of the Lüscher quantization condition [6], subsequently
extended in refs. [7–16] to include all types of coupled two-particle channels. We focus here on the
case of a single channel with two mass-degenerate but non-identical spin-zero particles.

Consider a quantum field theory defined in a finite cubic spatial volume of side-length 𝐿, with
periodic boundary conditions. This system has a discrete 𝐿-dependent energy spectrum, and the
energies lying below the lowest-lying three- or four-particle threshold can be used to extract the
elastic two-to-two scattering amplitude. We follow closely the derivation of Kim, Sachrajda and
Sharpe [9]. We begin by defining a two-point correlation function

𝐶𝐿 (𝐸, 𝑷) ≡
∫

𝑑𝑥0
∫
𝐿

𝑑3𝒙 𝑒−𝑖𝐸𝑥0
𝑒𝑖𝑷·𝒙⟨0|TA(𝑥)A†(0) |0⟩𝐿 , (4)

where the subscript 𝐿 in
∫
𝐿
𝑑3𝒙 indicates that the integral runs over the finite volume, 𝐸 denotes the

total energy, 𝑷 is the total spatial momentum, and A(𝑥) and A†(𝑥) are annihilation and creation
operators carrying the quantum numbers of the scattering channel of interest.

One can construct a diagrammatic representation for this correlator using the ingredients already
introduced in the previous section, the Bethe-Salpeter kernel and dressed propagator pairs. This is
known as the skeleton expansion for the correlator and is shown in figure 2. In finite volume, spatial
loop momenta are discretized as 𝒌 = 2𝜋

𝐿
𝒏, with 𝒏 ∈ Z3, and we have spatial loop momentum sums

instead of integrals, i.e. we replace
∫

𝑑3𝒌
(2𝜋 )3 → 1

𝐿3
∑

𝒌∈ (2𝜋/𝐿)Z3 for all loops.
The key observation here is that not all loops have the same volume dependence: loops with

intermediate states that cannot go on shell in the energy range considered have exponentially
suppressed volume effects O(𝑒−𝑚𝐿) with respect to their infinite-volume analogues, with 𝑚 being
the mass of the lightest particle coupled to the system, while loops with intermediate states that can
go on shell haver power-like effects O(𝐿−𝑛), for some non-negative integer 𝑛. In the elastic regime,
on-shell states come precisely from the loops left explicit in the skeleton expansion shown in figure 2.
Every other loop, implicitly included in the Bethe-Salpeter kernels and the dressed propagators, may
be replaced by its infinite-volume counterpart, as the difference, which we neglect, is exponentially
suppressed in 𝐿. Thus, we effectively replace the finite-volume Bethe-Salpeter kernels and dressed
propagators with their infinite-volume counterparts.

The contribution from a generic two-particle loop shown in figure 2 can be written as

𝐶
loop
𝐿

(𝑃) ≡
∫

𝑑𝑘0

2𝜋
1
𝐿3

∑︁
𝒌

L(𝑃, 𝑘) Δ(𝑘) Δ(𝑃 − 𝑘) R∗(𝑃, 𝑘) , (5)

4
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with 𝑃 ≡ (𝐸, 𝑷) and loop momentum 𝑘 ≡ (𝑘0, 𝒌). The functions L and R∗ stand for the objects
before and after the given loop, Δ is a fully dressed scalar propagator. Performing the 𝑘0-integral
and decomposing L and R in spherical harmonics with 𝑘 individually put on-shell, i.e. setting
𝑘 = (𝜔(𝒌), 𝒌) with 𝜔(𝒌) ≡

√︁
𝒌2 + 𝑀2, we can obtain

𝐶
loop
𝐿

(𝑃) = 1
𝐿3

∑︁
𝒌

Lℓ𝑚(𝑃, |𝒌★|) 𝑖Sℓ𝑚;ℓ′𝑚′ (𝑃, 𝒌; 𝐿) R∗
ℓ′𝑚′ (𝑃, |𝒌★|) + 𝑟 (𝑃) , (6)

where sums over the repeated indices ℓ, 𝑚 and ℓ′, 𝑚′ are implied, and we have introduced

Sℓ𝑚;ℓ′𝑚′ (𝑃, 𝒌; 𝐿) ≡
4𝜋𝑌ℓ𝑚( �̂�★)𝑌 ∗

ℓ′𝑚′ ( �̂�★) 𝐻 (𝒌★)
2𝜔(𝒌) 2𝜔(𝑷 − 𝒌) (𝐸 − 𝜔(𝒌) − 𝜔(𝑷 − 𝒌))

(
|𝒌★|
𝑝★

)ℓ+ℓ′
, (7)

for later convenience. The term 𝑟 (𝑃) in eq. (6) is a sum over a smooth summand, leading to
exponentially suppressed finite-volume corrections, which we may neglect. The summand in the
first term and, more specifically, the quantities Sℓ𝑚;ℓ′𝑚′ (𝑃, 𝒌; 𝐿), contain the pole corresponding to
the two-particle intermediate state going on-shell, as can be seen explicitly in eq. (7), and thus this
term contains all the power-like volume dependence arising from the loop we are considering.

In eq. (7), we use 𝑝★ ≡ 1
2

√
𝑠 − 4𝑀2, the scattering particle’s centre-of-mass spatial momentum

magnitude, as defined in section 2. Consequently, setting |𝒌★| = 𝑝★ satisfies the intermediate
two-particle state on-shell condition 𝐸 = 𝜔(𝒌) + 𝜔(𝑷 − 𝒌). This relation fixes the magnitude of 𝒌★

at the pole, but not its direction. The barrier factor
(
|𝒌★|/𝑝★

)ℓ+ℓ′ is introduced to ensure that no
singularities arise from the spherical harmonics.

The function 𝐻 (𝒌★) is a regulator function which takes a value of 1 for 4𝜔(𝒌★)2 < (𝐸★
inel.)

2 and
of 0 for 4𝜔(𝒌★)2 > (𝐸★

uv)2, where again 𝐸inel. is the lowest lying three- or four-particle threshold,
and 𝐸★

uv is some chosen high ultraviolet cut-off. In the region between, 𝐻 (𝒌★) interpolates smoothly
between the two values. This regulator function is similar to the one found in the three-body
scattering formalism of refs. [18, 19], and corresponds to a separation of low-energy and high-energy
parts of the sum.3

We next reduce eq. (6) by expanding the functions Lℓ𝑚(𝑃, |𝒌★|) and R∗
ℓ′𝑚′ (𝑃, |𝒌★|) about

|𝒌★| = 𝑝★ and subtracting and adding an integral to reach

𝐶
loop
𝐿

(𝑃) = Lℓ𝑚(𝑃, 𝑝★) 𝑖𝐹ℓ𝑚;ℓ′𝑚′ (𝑃; 𝐿) R∗
ℓ′𝑚′ (𝑃, 𝑝★) + 𝑟 ′(𝑃) ,

= Los(𝑃) 𝑖𝐹 (𝑃; 𝐿) R†
os(𝑃) + 𝑟 ′(𝑃) , (8)

where we introduce the sum-integral difference

𝐹ℓ𝑚;ℓ′𝑚′ (𝑃; 𝐿) ≡
[

1
𝐿3

∑︁
𝒌

− p.v.
∫

𝑑3𝒌

(2𝜋)3

]
Sℓ𝑚;ℓ′𝑚′ (𝑃, 𝒌; 𝐿) . (9)

Here, p.v. means the integral is evaluated using a principal-value prescription. The remainder
term 𝑟 ′(𝑃) differs from 𝑟 (𝑃), but still contains the sum of a smooth summand together with p.v.

3It should be emphasized that we have renormalization and regularization schemes keeping the overall result finite, the
regulator function here simply ensures we have a separation of high-energy and low-energy contributions to the sum such
that both parts are finite and that the low-energy part, which contains the relevant singular behaviour, is tractable when
implemented numerically. 𝐸uv will simply be a scheme-dependence of the formalism, but should be kept high, as setting
it too low will lead to enhanced finite-volume effects.
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integrals. In the second line of eq. (8), we have defined a compact vector-matrix notation in the
angular-momentum index space.

Applying this procedure iteratively to all loops in the skeleton expansion diagrams, it can be
shown that we may write the finite-volume correlator in the form:

𝐶𝐿 (𝑃) =
∞∑︁
𝑛=0

𝐴(𝑃) 𝑖𝐹 (𝑃; 𝐿) [𝑖K(𝑃) 𝑖𝐹 (𝑃; 𝐿)]𝑛 𝐴†(𝑃) + 𝐶∞(𝑃)

= 𝐴(𝑃) 𝑖
[
𝐹−1(𝑃; 𝐿) + K(𝑃)

]−1
𝐴†(𝑃) + 𝐶∞(𝑃) . (10)

Here, we have summed the geometric series of the first line to obtain the second line. 𝐴(𝑃) and
𝐴†(𝑃) are vectors in angular momentum index space, originating from the source and sink operators,
and K(𝑃) is the K-matrix introduced in the previous section4. Given that we neglect exponentially
suppressed volume effects, the 𝐿-dependence is entirely contained within the matrix 𝐹 (𝑃; 𝐿).

Using a spectral representation of the correlator, it is straightforward to show that it must have
poles at the energy levels of the finite-volume spectrum 𝐸𝑛 (𝑷; 𝐿). These poles in 𝐶𝐿 (𝐸, 𝑷) can
only arise from the 𝐿-dependent part of the first term, meaning that we must have

det
[
𝐹−1(𝐸𝑛 (𝑷; 𝐿), 𝑷; 𝐿) + K(𝐸𝑛 (𝑷; 𝐿), 𝑷)

]
= 0 , (11)

at all finite-volume energy levels. This is called the Lüscher quantization condition, and it can be
used to determine K , and hence the scattering amplitude M, from the knowledge of the finite-volume
spectrum. The matrices involved in the condition (11) are formally infinite-dimensional, since the
set of possible angular momentum indices ℓ𝑚 is infinite. For practical use, we must truncate them to
the lowest harmonics, making the approximation that K vanishes for ℓ > ℓmax. This relies on a fast
convergence of the partial-wave expansion of the amplitude, such that keeping the lowest harmonics
still leads to a reasonable reconstruction of the amplitude.

4. The 𝑡-channel problem

The finite-volume spectrum can sometimes include energy levels that drop below the infinite-
volume elastic threshold at 𝑠 = (2𝑀)2. This can occur due to the appearance of a bound state (such
that the 𝐿 → ∞ limit gives the bound-state mass) as well as to an attractive scattering state (such that
the energy approaches 2𝑀 for 𝐿 → ∞). In many cases, the Lüscher formalism can be analytically
continued from 𝑠 > (2𝑀)2 and the sub-threshold finite-volume energy then provides an important
constraint on the K-matrix below threshold.

A subtlety arises, however, when the sub-threshold amplitude M(𝑠, 𝑡), and therefore also the
K-matrix, has a nearby 𝑡-channel cut. This is generically the case in baryon-baryon systems, for
example, where a light meson can be exchanged in the 𝑡-channel. Taking 𝑚 and 𝑀 to be the meson
and baryon masses, respectively, and assuming 𝑚 ≪ 𝑀, one finds that a pole arises in M(𝑠, 𝑡) at
𝑡 = 𝑚2. For a given fixed choice of the centre-of-mass frame scattering angle 𝜃★, this then leads to a
pole in 𝑠 at

𝑠 = 4𝑀2 − 𝑡

sin2(𝜃★/2)

����
𝑡=𝑚2

= 4𝑀2 − 𝑚2

sin2(𝜃★/2)
. (12)

4Note K is an infinite-volume scalar, and thus only depends on 𝑠 = 𝑃2, but we keep 𝑃 as an argument for compactness.
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Figure 3: (a) Analytic structure of the two-to-two scattering amplitude M(𝑠, 𝑡) in the complex-𝑠 plane,
for fixed centre-of-mass scattering angle 𝜃★, in the case where a lighter particle of mass 𝑚 couples to the
scattering particles of mass 𝑀. We show the infinite-volume elastic threshold (at 𝑠 = (2𝑀)2) and inelastic
threshold (at 𝑠 = (2𝑀 +𝑚)2) and corresponding branch cuts. Below threshold, we see the 𝑡-channel exchange
pole, corresponding to 𝑡 = 𝑚2, and a lower branch cut, corresponding to two mesons being exchanged in the 𝑡
channel. (b) Analytic structure of the amplitude when projected to definite angular momentum. The 𝑡-channel
cut, which runs down from the branch point at 𝑠 = (2𝑀)2 − 𝑚2, arises from the 𝑡-channel pole.

The analytic structure of the scattering amplitude for such systems is shown in figure 3(a). From
the expression, one sees that the pole position in 𝑠 varies from 𝑠 = 4𝑀2 − 𝑚2 to 𝑠 = −∞ as 𝜃★ is
varied from 0 to 𝜋. As a result, the angular-momentum projection of the scattering amplitude leads
to a branch cut running over this interval as shown in figure 3(b). Multiple meson exchanges can
also occur, leading to additional cuts in both the fixed-𝜃★ and the angular-momentum projected
amplitudes. In the latter case, these run along 𝑠 ≤ (2𝑀)2 − (𝑛𝑚)2 for 𝑛 exchanged mesons.

As stressed above, finite-volume energies can arise in the region of the branch cuts (as has
recently been identified in ref. [3]) and a naive application of the analytically continued Lüscher
formalism fails. In this work, we restrict attention to the region (2𝑀)2 − (2𝑚)2 < 𝑠 < (2𝑀)2 − 𝑚2,
in which only the single-meson cut arises, and derive a modified version of the scattering formalism
that resolves this limitation.

5. Proposed solution

The breakdown in the original formalism can be traced back to the steps between eq. (6) and
(8) in the review of section 3. In the step of replacing Lℓ𝑚(𝑃, |𝒌★|) and R∗

ℓ′𝑚′ (𝑃, |𝒌★|) with the
on-shell quantities Lℓ𝑚(𝑃, 𝑝★) and R∗

ℓ′𝑚′ (𝑃, 𝑝★), the derivation assumes that the product of the
two-particle pole and a given difference, e.g. Lℓ𝑚(𝑃, |𝒌★|) − Lℓ𝑚(𝑃, 𝑝★), is a smooth function of
𝒌★. This step fails in the sub-threshold region due to the 𝑡-channel cut.

To handle this issue, we separate out the problematic 𝑡-channel exchanges from the Bethe-Salpeter
kernel. We define

𝑖𝑔2𝑇 (𝒌★, 𝒌′★) ≡ −𝑖𝑔2 1
−(𝒌★ − 𝒌′★)2 − 𝑚2 + 𝑖𝜖

, (13)

and define a modified kernel by subtracting this from the full Bethe-Salpeter kernel as shown in
figure 4. Here, 𝑔 denotes the effective baryon-meson-baryon coupling. We emphasize that 𝑚 is the
physical mass of the meson, and thus that −𝑖𝑇 corresponds to the singular part of the fully-dressed
meson propagator. The difference between the bare and dressed propagators is smooth, and is simply
absorbed into the modified kernel.

Examining the modified kernel, we know that it can be safely evaluated at |𝒌★| = 𝑝★ and does
not possess a singularity or cut in the region (2𝑀)2 − (2𝑚)2 < 𝑠 < (2𝑀)2 − 𝑚2. Crucially, we note
also that 𝑖𝑔2𝑇 is safe if kept partially off shell, namely if we keep |𝒌★| and |𝒌′★| real.

7
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Figure 4: Separation of the Bethe-Salpeter kernel into a modified
kernel (square box), which is safe to put on shell, and the 𝑡-channel
meson exchange, represented by a meson propagator at physical mass.

Recalling expression (8) for the contribution of a skeleton expansion loop, we again emphasize
that the finite-volume frame momentum 𝒌, and hence 𝒌★, are discretized and can be indexed by 𝒏 ∈ Z3.
Thus, we can then treat 𝒌★ as an extra index, writing L𝒌★ℓ𝑚 ≡ Lℓ𝑚(𝑃, |𝒌★|), R𝒌★ℓ𝑚 ≡ Rℓ𝑚(𝑃, |𝒌★|)
and defining 𝑆𝒌★ℓ𝑚;𝒌′★ℓ′𝑚′ (𝑃; 𝐿) ≡ 1

𝐿3 𝛿𝒌★𝒌′★Sℓ𝑚;ℓ′𝑚′ (𝑃, 𝒌; 𝐿) such that we may rewrite (8) as:

𝐶
loop
𝐿

(𝑃) = L𝒌★ℓ𝑚(𝑃) 𝑖𝑆𝒌★ℓ𝑚;𝒌′★ℓ′𝑚′ (𝑃) R𝒌′★ℓ′𝑚′ (𝑃; 𝐿) + 𝑟 (𝑃) , (14)
= L(𝑃) 𝑖𝑆(𝑃; 𝐿) R(𝑃) + 𝑟 (𝑃) . (15)

In the first line, we are also implicitly summing over the momentum indices. In the second line, we
again employ a compact vector-matrix notation, but now in the angular momentum plus spatial loop
momentum index space.

Applying this to all loops in the skeleton expansion diagrams and rearranging by factors of
𝑆(𝑃; 𝐿), we obtain the finite-volume correlator in the form

𝐶𝐿 (𝑃) =
∞∑︁
𝑛=0

𝐴(𝑃) 𝑖𝑆(𝑃; 𝐿)
[
(𝑖�̄� + 𝑖𝑔2𝑇 (𝑃)) 𝑖𝑆(𝑃; 𝐿)

]𝑛
𝐴†(𝑃) + 𝐶 (𝑖)

∞ (𝑃) , (16)

where all quantities in the first term are vectors or matrices in the angular momentum plus loop
momentum index space. Note that 𝐴(𝑃) and 𝐴†(𝑃) are different from those in (8). The matrix
𝑖𝑔2𝑇 is the matrix of angular momentum projections of the 𝑡-channel exchange defined in (13), and
�̄� (𝑃) is the sum of all possible smooth contributions one can obtain between 𝑆(𝑃; 𝐿) matrices. The
second term 𝐶

(𝑖)
∞ (𝑃) is a collection of 𝐿-independent terms.

From the discussion above, we know it is safe to set |𝒌★| = 𝑝★ for �̄� (𝑃) and, therefore,
we can expand �̄� (𝑃) about the on-shell point. We implement this by making use of a trivial
vector 𝑢 in the momentum index space, whose elements are 𝑢𝒌★ = 1, and making the substitution
�̄� (𝑃) = 𝑢K̄ (𝑃)𝑢† +

[
�̄� (𝑃) − 𝑢K̄ (𝑃)𝑢†

]
. The matrix K̄ (𝑃) is a matrix in the angular momentum

index space only and corresponds to �̄� (𝑃) with the dependence on the magnitude of spatial
momentum (through the momentum index) set to the on-shell momentum, i.e. with |𝒌★| = 𝑝★. The
different terms in brackets lead to terms that are sums of smooth summands and can be shuffled into
the remainder term. After summing over the resulting geometric series, we obtain the following for
the correlator:

𝐶𝐿 (𝑃) = 𝐴(𝑃) 𝑖
[
𝑆−1(𝑃; 𝐿) + 𝑢K̄ (𝑃)𝑢† + 𝑔2𝑇 (𝑃)

]−1
𝐴†(𝑃) + 𝐶 (𝑖𝑖)

∞ (𝑃) . (17)

Using the same arguments as in section 3, we can derive the quantization condition:

det
[
𝑆−1(𝐸𝑛 (𝑷, 𝐿), 𝑷) + 𝑢K̄ (𝐸𝑛 (𝑷, 𝐿), 𝑷)𝑢† + 𝑔2𝑇 (𝐸𝑛 (𝑷, 𝐿), 𝑷)

]
= 0 , (18)

at all finite-volume energy levels 𝐸𝑛 (𝑷, 𝐿). Given that 𝑆−1(𝐸𝑛 (𝑷, 𝐿), 𝑷) and 𝑇 (𝐸𝑛 (𝑷, 𝐿), 𝑷) can
be calculated numerically, one can use the knowledge of the finite-volume spectrum to obtain
K̄ (𝐸𝑛 (𝑷, 𝐿), 𝑷) as well as the coupling 𝑔. This object can then be linked back to the two-to-
two scattering amplitude via integral equations, in a similar vein to the procedure used for the
three-particle scattering formalism refs. [19]. We leave further discussion to the upcoming paper.
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6. Summary & Outlook

In this proceedings, we have described our progress in addressing issues arising in the Lüscher
finite-volume scattering formalism [6] and extensions [7–16] in the case of sub-threshold finite-
volume energies appearing on the 𝑡-channel cut. This work is motivated by recent lattice calculations
in baryon-baryon systems that have observed such energy levels [3].

To present the extension we first reviewed the standard derivation, following the method of
Kim, Sachrajda, and Sharpe [9] for the case on non-identical spin-zero particles. We then identified
the step in the derivation that fails to correctly account for the sub-threshold cut and provided a
modification to address the issue. Our main result is an adapted quantization condition that applies
above and below elastic threshold, including on the cut associated with single-meson exchange,
though not on lower cuts arising from the exchange of multiple mesons.

As we have in mind applications to baryon-baryon scattering, the next step, currently ongoing,
is generalizing the derivation to particles with arbitrary intrinsic spin. Once the theoretical work is
concluded, future directions include numerical tests on mock data (e.g. in the spirit of refs. [15]) and
eventually applications to lattice QCD baryon-baryon data.
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