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We test a method for computing the static quark-antiquark potential in lattice QCD, which is not
based on Wilson loops, but where the trial states are formed by eigenvector components of the
covariant lattice Laplace operator. The runtime of this method is significantly smaller than the
standard Wilson loop calculation, when computing the static potential not only for on-axis, but
also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required.
We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile
functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as
it was recently introduced to improve distillation in meson spectroscopy. We show results with
the new method for the static potential with dynamical fermions and demonstrate its efficiency
compared to traditional Wilson loop calculations. The method presented here can also be applied
to compute hybrid or tetra-quark potentials and to static-light systems.
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1. Introduction

We have developed a code for the calculation of the static potential energy based on the method
presented in [1], first proposed in [2] and also suggested in [3, 4], where the spatial Wilson lines
*B (®G, ®H, C) of a classical Wilson loop , (',)) of size (' = | ®H − ®G |) × () = |C1 − C0 |) are replaced
by 3D Laplacian eigenvector pairs E(®G, C)E†(®H, C)1 corresponding to the lowest eigenvalues _:

, (',)) =

〈
Tr[*C (®G; C0, C1)*B (®G, ®H, C1)*†C (®H; C0, C1)*†B (®G, ®H, C0)]

〉
→

〈
Tr[*C (®G; C0, C1)E(®G, C1)E†(®H, C1)*†C (®H; C0, C1)E(®H, C0)E†(®G, C0)]

〉
≡ ! (',)) , (1)

with *C (®G, C0, C1) the temporal (static) Wilson line at space point ®G from time C0 to C1. Sandwiched
between two eigenvectors at corresponding start- and end-times E(®G, C0) and E(®G, C1), it gives a static
quark line&(®G, C0, C1) = E†(®G, C0)*C (®G, C0, C1)E(®G, C1) at ®G of time extent ) = |C1 − C0 |. Its expectation
value 〈&(®G, ))〉 of course vanishes except for ) = 0. When combined with another static quark line
&̄(®H, C0, C1) at ®H, it gives the above Laplace trial state ! (',)) in �@. (1) for ' = | ®H − ®G |, depicted
in Fig. 1.
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Figure 1: The spatialWilson lines*B (®G, ®H, C) of the classicalWilson loop, (',)) of size (' = | ®H−®G |)×() =
|C1 − C0 |) (left) can be replaced by Laplacian eigenvector pairs E† (®G, C)E(®H, C) (right).

E(®G, C)E†(®H, C) represents all possible paths from ®G to ®H on the lattice, hence, we can not only
form straight lines (on-axis), but also off-axis paths very easily, which would correspond to very
complicated stair-like constructions of link variables. In fact, this simple method of measuring of
off-axis spatial Wilson lines and loops is one of the main advantages of this method. Many off-axis
separations are required for a fine resolution of the static potential which is important, e.g., when
performing a detailed investigation of string breaking [5, 6] or when matching the perturbative and
the lattice QCD static potential to determine the scale ΛMS [7–11].

We present an improvement of Eq. (1) using not only the eigenvector corresponding to the lowest
eigenvalue, but a number #E of lowest eigenvectors E8 weighted with Gaussian profiles depending
on their eigenvalues _8 . A similar methodwas successfully applied to hadronic correlation functions
in [12] where an optimal smearing profile was introduced in the distillation framework [13], which
can be equivalently expressed as an optimal creation operator for a meson. In the case of the static
potential we get an improvement for the static energies, which reach their plateau values at earlier
temporal distances, to be quantified below.

1Indeed,*B (®G, ®H, C) and E(®G, C)E† (®H, C) have the same gauge transformation behavior.
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2. The improved static energy based on Laplacian eigenvectors

First, we write the classical Wilson loop of size (' = | ®G − ®H |) × () = |C1 − C0 |) using trial states
which are formed by eigenvector components of the covariant lattice Laplace operator as a transfer
matrix2 of #E × #E eigenvectors E8 and E 9 in time slices C0 and C1 respectively,

!8 9 (',)) =
∑
®G,C0

〈
Tr[E†

8
(®G, C0)*C (®G; C0, C1)E 9 (®G, C1)E†9 (®H, C1)*

†
C (®H; C0, C1)E8 (®H, C0)]

〉
. (2)

We could either take a double sum over all eigenvector pairs 8, 9 = 1 . . . #E , which increases the
statistics and the signal of the Wilson loops or we can solve a GEVP for the Laplacian state basis
matrix !8 9 , which however is very ill-conditioned. We therefore prune !8 9 using the three most
significant singular vectors D: from a singular value decomposition3 via !̃:; = D†:,8!8 9D;, 9 , which
keeps only (a combination) of useful operators and improves the stability of the GEVP for fixed
'/0: !̃ (C)a: (C, C0) = `: (C, C0) !̃ (C0)a: (C, C0). From the principal correlators `: (C, C0) we get the
effective energies/masses. From the vectors a: (C, C0) and D: we see that the GEVP favors low-lying
eigenmodes. On the other hand, an increasing number #E of eigenvectors enhances the signal and
in particular the overlap with the ground-state in the effective energies/masses for small distances.
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Figure 2: The static potential (left) and three effective energies/masses (right) on ensemble Em1 using the
Laplacian eigenvector approach. The first is computed for all (!) on- and off-axis separations '/0, compared
to on-axis Wilson loops. The green points for '/0 ≤ 3 result from un-smeared Laplace trial state correlators
(no HYP), showing the Coulomb behavior of the potential at small ', these are shifted vertically to match
the potential with HYP2 smeared temporal links at '/0 = 2. The ground state overlap can be drastically
improved by using more eigenvectors, see Table 1, we get earlier plateaus for larger #E .

In Fig. 2 we show our results for the new observable compared to actual Wilson loop measure-
ments on a 243 × 48 lattice ensemble at V = 5.3 (0 = 0.0658fm) and # 5 = 2 non-perturbatively
$ (0)-improved Wilson quarks with ^ = 0.13270, corresponding to half the charm quark mass.
The original Wilson loop was measured on 4646 gauge configurations, while !8 9 was measured

2We thank Jeff Greensite for a fruitful discussion which lead to this slightly different approach compared to the
analysis presented in the original talk.

3!8 9 = *�+
† with* and + being unitary matrices, whose column vectors D: and E; form an orthonormal basis, and

� being diagonal with non-negative real numbers on the diagonal.
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on every fourth configuration only (1160 measurements). In the left plot we present the static
potential 0+0(') = lim)→∞ log[! (',))/! (',) + 0)] for all on- and off-axis separations '/0
from Laplacian eigenvector pairs compared to on-axis Wilson loop results. In the measurement
of Wilson loops all gauge links are HYP2 smeared [14]. We want to note that contrary to Wilson
loops, Laplace trial states have an exact symmetry of the potential around half the lattice extension
(in a specific direction ®A), where in fact the force between &&̄ must vanish due to the periodic
boundary conditions, i.e., the static potential should be flat. The right plot in Fig. 2 clearly shows
that an increasing number #E of Laplacian eigenvector pairs improves the ground state overlap of
the effective energies/masses for the static quark-anti-quark system. Already #E = 8 eigenvector
pairs reach the plateau values faster than the original Wilson loops, while at #E = 100 the effect
seems to saturate, we do not see a difference between #E = 100 and #E = 200. The ground state
overlaps can be quantified by taking the C-average over the mass-plateau region of

! (', C)
! (', C0)

cosh
( (
)
2 − C0

)
0+0(')

)
cosh

( (
)
2 − C

)
0+0(')

) , (3)

using the same C0 = 3 as in the GEVP and corresponding ground state energiesd 0+0(') from a
cosh-fit. These so-called ’fractional overlaps’ are listed in Table 1 and underpin again, that a large
number #E of eigenvector pairs gives better overlaps for small distances '/0, but with decreasing
importance especially for large distances, where already #E < 100 shows better overlaps.

'/0 #E = 1 8 64 100 200 Gauss Wloop GEVP

1 0.773(3) 0.945(1) 0.970(1) 0.980(1) 0.982(1) 0.993(1) 0.921(1) 0.983(1)
2 0.747(4) 0.929(2) 0.964(1) 0.988(1) 0.987(1) 0.989(1) 0.891(1) 0.978(1)
3 0.723(4) 0.878(2) 0.984(2) 0.987(2) 0.986(1) 0.988(1) 0.867(1) 0.972(2)
4 0.726(5) 0.874(3) 0.921(2) 0.982(2) 0.984(2) 0.986(2) 0.841(2) 0.965(3)
5 0.637(6) 0.871(4) 0.979(3) 0.983(3) 0.982(3) 0.983(3) 0.813(2) 0.956(5)
6 0.629(6) 0.869(4) 0.978(4) 0.981(4) 0.980(3) 0.981(3) 0.793(3) 0.948(6)
7 0.619(7) 0.869(5) 0.977(4) 0.982(4) 0.979(4) 0.987(4) 0.772(3) 0.934(7)
8 0.598(8) 0.862(6) 0.972(5) 0.971(5) 0.970(4) 0.974(4) 0.745(4) 0.953(8)
9 0.572(8) 0.857(6) 0.960(5) 0.954(5) 0.934(4) 0.963(3) 0.708(4) 0.947(9)
10 0.540(9) 0.840(7) 0.955(5) 0.941(6) 0.931(5) 0.965(1) 0.671(5) 0.94(1)
11 0.426(9) 0.807(7) 0.943(6) 0.934(5) 0.93(1) 0.956(9) 0.649(4) 0.93(1)
12 0.33(7) 0.79(2) 0.94(1) 0.932(9) 0.92(1) 0.95(1) 0.64(2) 0.92(1)

Table 1: Fractional overlaps with the corresponding ground state energies 0+0 ('). In general, an increasing
number #E of Laplacian eigenvectors enhances the overlap up to about #E ≈ 100 and are already better for
#E = 8 than standard Wilson loops (column 7). The overlaps for Laplace trial states from a GEVP with
Gaussian profiles in the 6th column are better than Wilson loop results from a GEVP with different spatial
HYP smearing levels (column 8), see text below.

Therefore, instead of feeding a large ill-conditioned #E × #E transfer matrix to the GEVP we
introduce Gaussian profile functions exp(−_2/2f2) for each eigenvector with the corresponding
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eigenvalue _ and different Gaussian widths f. We define the new GEVP basis matrix

L:; (',)) =

#E∑
8, 9

#:; (_8 , _ 9)!8 9 (',)), (4)

by (double-)summing over the #E eigenvector pairs4, weighted by Gaussian profile functions

#:; (_8 , _ 9) = exp(−_2
8 /2f2

: ) exp(−_2
9/2f2

; )

with f:,; ∈ [0.05, 0.0894, 0.1289, 0.1683, 0.2078, 0.2472, 0.2867], see Fig. 3 (left). This way we
gain statistics (precision) by the double sum and find an optimal number of ’important’ eigenvectors
by solving the GEVP for the Wilson loop basis matrix L:; using combinations of profiles with
different f:,;. Again, we first prune L:; using the three most significant singular vectors D< via
L̃<= = D†<,:L:;D=,;, which keeps only (a combination) of useful operators and improves the stability
of the GEVP for fixed '/0: L̃(C)a (=) (C, C�) = ` (=) (C, C�)L̃(C�)a (=) (C, C�).. From the principal
correlators `8 (C, C0) we get the effective energies/masses. From the generalized eigenvectors a (=)

and singular vectors D8 we get the ’optimal’ profiles d (=)
'
=

∑
:,; a

(=)
:
D:,;4

−_2
8
/2f2

; , depicted in blue,
red and green in Fig. 3 (right) for '/0 = 4. Indeed, the ’optimal’ profiles give us a number #E ≈ 100
of ’important’ eigenvectors for '/0 = 4, for larger ' this number slightly decreases.
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Figure 3: The Gaussian profiles (left) pruned by SVD vectors to ’optimal’ profiles (right) for the GEVP.

3. Results of the improved static energy computation

With the method presented in the previous section, the implementation of [1], see also Eq. (1),
using only the eigenvector corresponding to the lowest eigenvalue, can be significantly improved
by (double-)summing over the lowest #E eigenvector pairs, weighted by Gaussian profile functions
using their corresponding eigenvalues exp(−_2/2f2) and different Gaussian widths f:/;. Just like
for the standard Wilson loop, where we solve a generalized eigenvalue problem for the correlation
matrix of Wilson loops with different spatial smearing levels, we feed L:; from Eq. (4) (or its

4Actually, the sum over C0 in Eq. (2) should be the outer most in Eq. (4), since the eigenvalues minimally vary between
time-slices, however using the average eigenvalues over all time-slices does not change the final results or precision.
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pruned version) into a GEVP which gives us the ’optimal’ profiles or most important eigenvector
pairs for each '/0. We present the improvement of effective energies using our method in the
left plot of Fig. 4, showing the effective energies/masses using the improved Laplacian eigenvector
approach with Gaussian profiles after solving the GEVP together with smearedWilson loop results.
In fact, the results from Laplacian modes show higher accuracy than those fromWilson loops, even
though measured only on a fourth of the total statistics, however we increased the averaging by the
double-sum over different eigenvectors.
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Figure 4: The effective energies/masses (left) using the Laplacian eigenvector approach with Gaussian
profiles and Wilson loops with spatial HYP smearing after solving the GEVP, and static potentials +=
(right) for the ground (= = 0) and excited (= = 1, 2) states, which we compare with the excited string states
+0+(=+1)c/0', the lowest 0++ iso-scalar meson (possible glueball) state+0+0<eff (iso-scalar 0++) from [15]
and two times the static-charm meson mass, which was also evaluated using the new method.

The right plot of Fig. 4 presents the static potentials += for the ground (= = 0) and first excited
(= = 1) states using the Laplacian eigenvector approach with Gaussian profiles after solving the
GEVP. The excited states (= = 1, 2) are just included to show the potential of the method.

4. Computational advantage and timings

The computational effort of this new method is even favorable to the standard Wilson loop
calculation, especially for off-axis separations. In fact, for our test ensemble on a 243×48 lattice the
computation of on-axis Wilson loops using 4 spatial smearing levels (0, 10, 20, 30 HYP steps) [14]
is equally expensive as the calculation of 100 Laplacian eigenvectors and Laplace states with 3
Gaussian profiles including off-axis distances.

The computational advantage arises from the fact that the eigenvector pairs ++† in Eq. (1) can
be split up due to the trace to form the static quark &(®G, C0, C1) = E†(®G, C0)*C (®G, C0, C1)E(®G, C1) and
anti-quark &̄(®G, C0, C1) = E†(®H, C1)*†C (®H, C0, C1)E(®H, C0) lines, which can be contracted separately at all
®G resp. ®H first to a complex number at each position, which then can easily be multiplied for arbitrary
on- and off-axis separations without the need to compute complicated stair-like connections.
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5. Conclusions & Outlook

We presented an alternative operator for a static quark-anti-quark pair based on Laplacian
eigenmodes and improved the operator given in [1] using a large number of eigenvectors weighted
with Gaussian profiles. We observe earlier plateaus in the effective masses and a better signal. The
main advantage of this eigenvector approach however is to have an efficient method to compute the
static potential not only for on-axis, but also for many off-axis quark-antiquark separations. Using
the standard gauge link approach for the computation of Wilson loops, is rather time consuming,
since a large number of stair-like gluonic connections has to be computed (cf. e.g. [5] for a
discussion of how to compute such off-axis Wilson loops). In comparison, computing many off-
axis separations of the static potential using Laplacian eigenvectors requires less computing time,
since the eigenvector components of the covariant lattice Laplace operator have to be computed
only once and can then be used for arbitrary on-axis and off-axis separations without the need to
compute stair-like connections.

Wewant to adapt the method to also measure hybrid static potentials relevant for exotic mesons,
where the gluonic string excitations (gluonic handles in the standard Wilson loop approach) can be
realized by covariant derivatives of the Laplacian eigenvectors in Eq. (1). Finally, when we combine
our static quark line with a perambulator from [12], we can build a static-light quark meson. The
long-term plan is to put together all building blocks for observation of string breaking in QCD
(mixing matrix of static and light quark propagators) in the framework of distillation [13]. For more
details on the derivation of the method and possible applications please see [16].
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