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1. Introduction

The violation of charge conjugation symmetry (C) as well as the violation of this combined
with parity (CP) are necessary conditions to explain the matter-antimatter asymmetry in the universe
[1]. There are various known sources of CP-violation in the standard model of particle physics1 but
their combined effect appears to be too small to account for the observed asymmetry [4]. Recently
the LHCb experiment observed nonzero CP asymmetry in the decay of charmed hadrons for the
first time [5] and estimated the difference of the time-integrated asymmetries in �0 →  − + and
�0 → c−c+ decays to be

Δ�CP = �CP( − +) − �CP(c−c+) = (−15.4 ± 2.9) × 10−4 . (1)

These kinds of decays can be a test case for beyond-the-standard-model dynamics in the up-quark
sector but the corresponding theoretical standard model predictions are difficult to compute reliably.
(See for example ref. [6].)

In these proceedings, we describe our progress towards a first calculation of hadronic �-decays
from first principles using Monte Carlo simulations of lattice QCD at heavier-than-physical quark
masses. Our strategy to obtain the desired decay amplitude is to compute the required matrix element
via an effective four-quark HamiltonianHweak [7] in a finite spacetime volume. We can then relate
the finite-volume matrix element to its infinite-volume counterpart via the relation due to Lellouch
and Lüscher [8] and subsequent generalizations [9–14]:

|�|2 = 8c
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��/MS〈=, ! |Hweak |�, !〉
��2 , (2)

where the quantity in angled brackets is a finite-volume matrix element that can be determined via
lattice QCD, and depends on the box length ! and the final state = as indicated. The renormalization
factor /MS is the link between the lattice regularized matrix element and its continuum counterpart.
The factor multiplying the renormalized matrix element, often called the Lellouch-Lüscher factor,
relates it to the infinite-volume decay amplitude and depends on q(@) (a known geometric function
of @ = :!/(2c) where : is the momentum of the decay products). The factor additionally depends
on X0, the B-wave scattering phase of the final-state particles. A central challenge here is that the
〈=, ! | state must satisfy �= = <� , where <� is the incoming meson mass, in order to define a
physical decay.

On the way towards a first full computation of hadronic �-decays on the lattice, various
theoretical and computational challenges have to be overcome. (See ref. [15] for a recent more
general discussion of numerical challenges in lattice QCD simulations.) In these proceedings we
particularly focus on studying  c scattering, with an eye on � →  c decays. The scattering study
is required for two reasons. First, as can be seen in eq. (2), the scattering phase shift is required to
extract the physical observable. Second, as we detail below, the analysis requires the construction of
optimized operators that can then also be used to create the excited 〈=, ! | state in the decay.

1See e.g. refs. [2, 3] for pedagogical overviews.
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2. Computational setup

In this study we work on a set of gauge-field ensembles with three flavors of stabilised Wilson
fermions [16] and tree-level Symanzik improved gluons. The ensembles were generated by the
OPEN LATtice initiative [17–19] using the openQCD software package [20]. The three degenerate
sea quarks in the simulation are tuned such that the sum of their masses is equivalent to their sum in
the physical world. The gauge-field ensembles which we plan to use in this project are summarized
in Table 1. All preliminary results presented in these proceedings are only based on the coarsest
ensemble, labeled a12m400. We plan to extend this calculation to two additional ensembles with
very similar pion masses and physical volumes but finer lattice spacings, which can be considered to
lie on an approximate line of constant physics. This will allow us to control the continuum limit of
the calculation which is especially important for observables with heavy valence quarks.

Label ) × !3/04 V ^ a (fm) <c (MeV)

a12m400 96 × 243 3.685 0.1394305 0.12 410

a094m400 96 × 323 3.8 0.1389630 0.094 410

a064m400 96 × 483 4.0 0.1382720 0.064 410

Table 1: Planned gauge-field ensembles for this project. All preliminary results were generated on ensemble
a12m400. We plan to include the greyed out ensembles in the near future.

For the computation of the relevant correlation functions, we make use of the exact distillation
method described in ref. [21]. In this approach, a smearing matrix S is obtained from the low-mode
subspace of the three-dimensional gauge-covariant Laplacian

S(C) =
#vec∑
:=1

D: (C)D: (C)† , (3)

where D: are the eigenvectors of −∇2. Correlation functions can then be cost effectively built from
the smeared quark fields

@̃ = S@ . (4)

For the � = 3/2 B-wave channel, which will be the focus of these proceedings, we construct correlation
functions from  c two-hadron interpolators with different momenta.

From the relevant operators for a given channel we construct a correlator matrix � and solve a
generalized eigenvalue problem (GEVP) [22–25]

� (C)E8 (C, C0) = _8 (C, C0)� (C0)E8 (C, C0) , (5)

in order to obtain the eigenvalues _8 (C, C0) ∼ 4−0�8 (!) (C−C0) for a desired state 8.
Our computational setup is based on the Grid [26] and Hadrons [27] program libraries. The

distillation modules are also used in an ongoing  c scattering study at the physical point using
Domain Wall fermions [28, 29]. For the error analysis we make use of the Γ-method approach
[30, 31] in the pyerrors implementation [32].
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3. Eigenvector dependence of the finite-volume energies

When choosing the number of eigenvectors #vec of the gauge-covariant Laplacian for the
smearing matrix, eq. (3), one has to find a compromise between the statistical error and anticipated
smearing radius on the one side and the computational cost and memory requirement on the other.
One method to get an idea of the required number of eigenvectors is to look at the spatial distribution
of the distillation operator as suggested in ref. [21]. This spatial distribution function defined as

Ψ(A) =
∑

x

√
trSx,x+rSx+r,x√

trSx,xSx,x
, (6)

with A = |r| is shown in Figure 1 for ensemble a12m400 and #vec ∈ {20, 40, 60}. The smearing
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Figure 1: Smearing profile of the distillation operator as a function of #vec on ensemble a12m400 with
stout-smearing [33] parameters d = 0.1 and = = 1.

profile allows one to get an estimate for the smearing radius for a given number of eigenvectors
and therefore an idea of the relevant scales in the computation. It is, however, non-trivial how the
estimated smearing radius translates into operator overlaps and overall statistical precision of the data.
Instead of using the smearing profile as a benchmark for the impact of #vec we opt for an empirical
approach and study the quality of finite-volume energies extracted via a GEVP as a function of #vec.

In this contribution we restrict our discussion to the repulsive � = 3/2 B-wave channel. In
Figure 2 we show the effective masses defined by

0<eff (C) = log
(
_(C, C0)

_(C + 1, C0)

)
, (7)

where _ is an eigenvalue obtained by solving a GEVP defined in eq. (5) for given state 8 and reference
time slice C0 = 2. From the bottom panel it becomes obvious that the #vec has very little impact
on the quality of the extracted ground state energy. In line with our expectation a smaller number
of eigenvectors corresponds to a larger smearing radius and thus results in slightly better overlap
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Figure 2: Effective masses from a GEVP with C0 = 2 for different values of #vec for 8 = 0, 1, 2, 3 from bottom
to top calculated on 77 configurations of ensemble a12m400.
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with the ground state which can be seen from the fact that the effective mass settles to a plateau
at earlier source sink separations G0/0. This observation drastically changes for the higher excited
states for which a higher number of eigenvectors improves both the statistical quality and the overlap
of the GEVP extracted correlator with the desired state. Particularly for the third excited state (top
panel in Figure 2) #vec = 20 does not seem to sufice to obtain a reliable estimate of the associated
finite-volume energy. We take the fact that the plateaus for all relevant states in this channels agree
at moderate source sink separations for both #vec = 40 and #vec = 60 as confirmation that 60
eigenvectors seems to be a reasonable compromise and proceed with this setup.

4. Lellouch-Lüscher factors

From the finite-volume energies extracted from our preferred data set with #vec = 60 we can
derive the corresponding scattering phase shifts via the relation

X0(@) = arctan

(
c

3
2 @

/00(1; @2)

)
, @ =

:!

2c
, (8)

originally derived by Lüscher [34, 35]. The corresponding phase shifts which we obtain for the
� = 3/2 B-wave channel are shown in Figure 3 as a function of :/<c , together with a linear fit to the
data. With this model for the scattering phase shift we can get an estimate for the “Lellouch-Lüscher”
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Figure 3: � = 3/2 B-wave scattering phase shifts as a function of :/<c together with a linear fit to the data.

factors relating the finite-volume to the infinite-volume decay amplitudes which are summarized in
Table 2.

To get an idea of the overall impact of our scattering calculation on the proportionality factors
we display these factors divided by their non-interacting counterparts in Figure 4. For all four
@ values in our calculation we see a statistical significant difference from unity highlighting the
importance of the scattering analysis for the extraction of hadronic �-decay amplitudes.
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@ F

0.110(16) 117(27)
1.0253(87) 69.84(65)
1.4375(93) 59.60(41)
1.7530(96) 80.99(37)

Table 2: Finite-to-infinite volume proportionality factors �2 = 8c
{
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Figure 4: Finite-to-infinite-volume proportionality factors as a function of @ divided by their non-interacting
counterparts. The shaded blue area is not a fit to the data but an estimate for the expected statistical uncertainty
for values of @ which are not covered by our data set.

5. Conclusions & Outlook

In these proceedings we describe our steps towards the first ab-initio calculation of hadronic
decays of �-mesons. In our simplified setup we focus on the � →  c decay channel at non-physical
quark masses. In order to construct operators which excite  c final states with energies close to
the �-meson mass we make use of the exact distillation method. We use an empirical approach to
determine the number of eigenvectors of the gauge covariant Laplacian and found that #vec = 60
is a good compromise for our setup. With the results from a scattering phase shift analysis for
the repulsive � = 3/2  c channel we were able to obtain first results for the “Lellouch-Lüscher”
proportionality factors which relate the finite-volume matrix elements to the infinite-volume decay
amplitudes.
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