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1. Introduction

Within the last years, a large number of four-quark states have been discovered experimentally
as well as predicted theoretically. There are also a lot of ongoing activities and more discoveries
are expected in the near future. An example of a recent discovery is the 𝑇+

𝑐𝑐 (𝑐𝑐�̄��̄�) tetraquark
state which has been found as a weakly bound tetraquark state by the LHCb collaboration [1, 2].
A subsequent lattice study investigating the same 𝑐𝑐�̄��̄� state predicts a virtual bound state slightly
below the 𝐷𝐷∗ threshold [3]. In this work, we also use lattice QCD and study similar antiheavy-
antiheavy-light-light four-quark states �̄��̄�′𝑞𝑞′, where at least one of the heavy quarks is a bottom
quark, i.e. �̄� = �̄�.

Such systems were first investigated with lattice methods using the Born-Oppenheimer ap-
proximation. Those studies predicted a hadronically stable �̄��̄�𝑢𝑑 tetraquark with binding energy
≈ 60 . . . 90 MeV below the 𝐵𝐵∗ threshold in the 𝐼 (𝐽𝑃) = 0(1+) channel [4–9]. Additionally, a �̄��̄�𝑢𝑑
resonance with quantum numbers 𝐼 (𝐽𝑃) = 0(1−) was found ≈ 20 MeV above the 𝐵𝐵 threshold
with decay width Γ ≈ 100 MeV [10]. Furthermore, full lattice QCD studies using NRQCD for
the bottom quarks confirm the existence of the hadronically stable �̄��̄�𝑢𝑑 tetraquark, predicting a
binding energy of magnitude 130 . . . 190 MeV [11–13]. Moreover, extensive studies of �̄��̄�𝑢𝑠 and
�̄�𝑐𝑢𝑑 four-quark states have been carried out within the same lattice setups. In the �̄��̄�𝑢𝑠 case, a
hadronically stable tetraquark with binding energy of ≈ 80 MeV has been predicted, while for the
�̄�𝑐𝑢𝑑 systems, the situation is less clear and results are still inconclusive [12, 14–19].

In this paper, we summarize our recent and ongoing activities with improved operator bases
using scattering operators at the sink for �̄��̄�𝑢𝑠 and �̄�𝑐𝑢𝑑 as well as using scattering operators both
at the sink and the source for �̄��̄�𝑢𝑑.

2. Investigation of �̄��̄�𝑢𝑠 and �̄�𝑐𝑢𝑑 four-quark states using scattering operators at
the sink

In previous lattice QCD studies focusing on �̄��̄�𝑢𝑠 and �̄�𝑐𝑢𝑑 four-quark systems, only local
operators have been utilized. With local operators we refer to operators in which all four quarks
are centered at the same point in space with total momentum projected to zero. Here we extend
the operator basis by scattering operators, which resemble two spatially separated mesons, i.e. the
meson momenta are separately projected to zero. If a bound state exists in a specific channel,
we expect that local operators generate sizable overlaps to that bound state. Moreover, scattering
operators allow to also resolve two-meson scattering states, which are expected to be close to
possibly existing bound states. In recent work [13, 19], we highlighted the importance of scattering
operators by demonstrating that the ground-state energy decreases for all systems significantly, if
scattering operators are included.

In this section, we summarize our recent publication [19], where we studied quantum numbers
𝐽𝑃 = 1+ for quark flavors �̄��̄�𝑢𝑠 and the two channels 𝐼 (𝐽𝑃) = 0(0+) and 𝐼 (𝐽𝑃) = 0(1+) for quark
flavors �̄�𝑐𝑢𝑑. For each system, we consider several local mesonic operators and one local diquark-
antidiquark operator both at the sink and the source as well as several scattering operators only at
the sink. For more details about the operators, we refer to Ref. [19].
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2.1 Lattice setup

We used gauge link configurations generated by the RBC and UKQCD collaboration with
2 + 1 flavours of domain-wall fermions and Iwasaki gauge action [20, 21]. We used five different
ensembles which differ in the lattice spacing, the spatial extent and the pion mass, with one ensemble
at the physical pion mass. The parameters of the five ensembles can be found in Table 1 of Ref. [19].

We used smeared point-to-all propagators for all quark flavors. The bottom quarks are treated
in the framework of NRQCD [22, 23], whereas we applied a relativistic heavy quark action for the
charm quarks [24]. Due to the use of point-to-all propagators, scattering operators could only be
implemented at the sink. Consequently, our correlation matrices are non-square.

2.2 Existence of a hadronically stable �̄��̄�𝑢𝑠 four-quark state with 𝐽𝑃 = 1+

We determined the ground-state energy for all five ensembles discussed in Sec. 2.1. In Fig. 1,
we plot the ground-state energy as function of the squared pion mass relative to the lowest two-
meson threshold 𝐵𝐵∗

𝑠. For all ensembles this energy is clearly below the threshold, which provides
strong evidence for a hadronically stable tetraquark state. Additionally, we performed a chiral
extrapolation to the physical pion mass, which yields a binding energy of

Δ𝐸0(𝑚𝜋,phys) = (−86 ± 22 ± 10) MeV. (1)
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Figure 1: Ground-state energy as function of the squared pion mass for the �̄��̄�𝑢𝑠 system. The blue line
and error band indicates the fit to the data points and linear extrapolation to the physical pion mass at
𝑚𝜋,phys = 135 MeV.

We also computed the overlaps of the trial states to the low lying energy eigenstates. In
particular we found that one of our local operators generates a large ground-state overlap but only
little overlap to excited states. This supports our interpretation of the ground-state as a hadronically
stable tetraquark. For more details see Ref. [19].

2.3 �̄�𝑐𝑢𝑑 four-quark states with 𝐼 (𝐽𝑃) = 0(0+) and 𝐼 (𝐽𝑃) = 0(1+)

We present the results for the two �̄�𝑐𝑢𝑑 channels in Fig. 2. In both cases we find the lowest
energy level above or in agreement with the lowest associated two-meson threshold. Accordingly,
there is no indication that a stable tetraquark state exists in either of the two channels.
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As before, we also computed the overlap factors. The results suggest that the ground-states are
two-meson scattering states rather than tetraquarks (see Ref. [19] for details).
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Figure 2: Ground-state energy as function of the squared pion mass for the �̄�𝑐𝑢𝑑 system with 𝐼 (𝐽𝑃) = 0(0+)
(left) and with 𝐼 (𝐽𝑃) = 0(1+) (right).

3. Investigation of a �̄��̄�𝑢𝑑 four-quark state using scattering operators both at the
sink and at the source

We have studied the �̄��̄�𝑢𝑑 system with 𝐼 (𝐽𝑃) = 0(1+) already some time ago using the same
setup and techniques as discussed in Sec. 2, i.e. employing scattering operators only at the sink [13].
Now we are in the process of improving these calculations by including the scattering operators
also at the source. The full implementation of scattering operators is highly beneficial for reliably
extracting the low-lying energy levels [25]. Moreover, a rigorous scattering analysis using Lüscher’s
method, enabled by such a complete implementation, is essential for the study of other tetraquark
systems closer to or above strong-decay thresholds.

3.1 Lattice setup

This calculation is carried out on gauge link configurations generated by the MILC collaboration
with 2 + 1 + 1 flavors of HISQ fermions [26]. For the valence quarks we use a Wilson-clover action
following the approach in Refs. [27, 28]. We list the parameters of the six ensembles used in this
computation in Table 1. Note that we have three ensembles with almost the same lattice spacings
and pion masses but different spatial extents (a12m220S, a12m220, a12m220L) which allow us to
perform a high-quality scattering analysis based on finite-volume energy levels from three different
spatial volumes.

We use smeared point-to-all propagators for diagrams with local operators at the source and
stochastic timeslice-to-all propagators for diagrams with scattering operators at the source. As
before, the bottom quarks are treated in the framework of NRQCD.

3.2 Existence of a hadronically stable �̄��̄�𝑢𝑑 four-quark state with 𝐼 (𝐽𝑃) = 0(1+)

We use the same operator basis as in our previous work [13]. This time, however, we compute
the full squared correlation matrix. The lowest finite-volume energy levels are determined by
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Ensemble 𝑁3
𝑠 × 𝑁𝑡 𝑎 [fm] 𝑚

(sea)
𝜋 [MeV] 𝑚

(val)
𝜋 [MeV] 𝑁conf

a12m310 243 × 64 0.1207(11) 305.3(4) 310.2(2.8) 1053
a12m220S 243 × 64 0.1202(12) 218.1(4) 225.0(2.3) 1020
a12m220 323 × 64 0.1184(10) 216.9(2) 227.9(1.9) 1000

a12m220L 403 × 64 0.1189(09) 217.0(2) 227.6(1.7) 1030
a09m310 323 × 96 0.0888(08) 312.7(6) 313.0(2.8) 1166
a09m220 483 × 96 0.0872(07) 220.3(2) 225.9(1.8) 657

Table 1: Gauge link ensembles [26] used in this work. 𝑁𝑠 , 𝑁𝑡 : number of lattice sites in spatial and temporal
directions; 𝑎: lattice spacing; 𝑚(sea)

𝜋 : sea quark pion mass; 𝑚(val)
𝜋 : valence quark pion mass; 𝑁conf: number

of gauge link configurations.

solving a standard generalized eigenvalue problem on all six available ensembles. To determine the
infinite-volume ground-state energies on each of the ensembles a09m220, a09m310 and a12m310
and on the set of three ensembles with similar 𝑎 and 𝑚𝜋 (a12m220S, a12m220, a12m220L), we
perform scattering analyses including the two lowest energy levels from each ensemble.

We define the scattering momenta 𝑘𝑛 (𝑛 = 0, 1) for each ensemble via

𝑘2
𝑛 =

Δ𝐸𝑛 (Δ𝐸𝑛 + 2𝑚𝐵,kin) (Δ𝐸𝑛 + 2𝑚𝐵∗,kin) (Δ𝐸𝑛 + 2𝑚𝐵,kin + 2𝑚𝐵∗,kin)
4(Δ𝐸𝑛 + 𝑚𝐵,kin + 𝑚𝐵∗,kin)2 (2)

with Δ𝐸𝑛 = 𝐸 (𝑛) − 𝐸𝐵 − 𝐸∗
𝐵

, where 𝐸 (𝑛) is the 𝑛-th energy level of the �̄��̄�𝑢𝑑 system and 𝐸𝐵 and
𝐸∗
𝐵

are the lattice energies of the 𝐵- and 𝐵∗-meson. The kinetic meson masses 𝑚𝐵,kin and 𝑚𝐵∗,kin
are calculated in the same way as described in Sec. IV of Ref. [13].
The finite-volume scattering momenta are related to the infinite-volume 𝑆-wave phase shift [29] by

cot(𝛿0(𝑘𝑛)) =
2𝑍00(1; (𝑘𝑛𝐿/2𝜋)2)

𝜋1/2𝑘𝑛𝐿
. (3)

By parametrizing the scattering phase shift via the effective-range-expansion (ERE),

𝑘 cot 𝛿0(𝑘) =
1
𝑎0

+ 1
2
𝑟0𝑘

2, (4)

we relate the parameters 𝑎0 and 𝑟0 to finite-volume energy levels 𝐸par(𝐿, 𝑛; 𝑎0, 𝑟0), 𝑛 = 0, 1. This
allows us to define and to minimize the 𝜒2 function

𝜒2 =
∑︁
𝐿

∑︁
𝑛,𝑛′

(
𝐸 (𝐿, 𝑛) − 𝐸par(𝐿, 𝑛; {𝑎𝑖})

)
C−1(𝐿, 𝑛, 𝑛′)

(
𝐸 (𝐿, 𝑛′) − 𝐸par(𝐿, 𝑛′; {𝑎𝑖})

)
, (5)

where 𝐸 (𝐿, 𝑛) is the 𝑛-th lattice energy level for lattice extent 𝐿 andC−1 is the corresponding inverse
covariance matrix. Finally, the infinite-volume ground-state energy is obtained by determining the
pole of the scattering amplitude

𝑇0(𝑘) =
1

cot 𝛿0(𝑘) − 𝑖
. (6)

We show in Fig. 3 (left) the lowest finite-volume energy levels for three different lattice sizes at
𝑎 ≃ 0.12 fm and 𝑚𝜋 ≃ 220 MeV as well as the corresponding ERE fit. The infinite-volume ground-
state energy level, which is shown as red horizontal band, is essentially identical to the finite-volume
energies.
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In that way we have determined the infinite-volume ground-state energies for all four different
pairs of pion masses and lattice spacings. We present them in Fig. 3 (right) together with a chiral
extrapolation to the physical pion mass (lattice discretization errors are ignored at the moment).
This leads to an infinite-volume binding energy at the physical pion mass 𝑚𝜋,phys = 135 MeV of

Δ𝐸0(𝑚𝜋,phys) = (−103 ± 8) MeV. (7)

This result is slightly smaller, but still consistent with our previous result (−128 ± 24 ± 10) MeV
from Ref. [13], where we have used scattering operators only at the sink. Note that further technical
details of our ongoing study were presented at the same conference [25].
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Figure 3: �̄��̄�𝑢𝑑 system with 𝐼 (𝐽𝑃) = 0(1+). Left: Finite-volume energy levels for the ensembles a12m220S,
a12m220 and a12m220L (black data points are used in the scattering analysis). The yellow points are the
energy levels obtained by the ERE fit and the red horizontal line represents the resulting infinite-volume
ground-state energy. Right: Ground-state energy as function of the squared pion mass. The blue line and
error band indicates the fit and linear extrapolation to the physical point at 𝑚𝜋,phys = 135 MeV.
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