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Resonances play an important role in Standard Model phenomenology. In particular, hadronic
resonances feature in B and D decays, which can be central for New Physics searches. Lattice
QCD simulations combined with the finite-volume method can nowadays be used to reliably study
strongly coupled scattering processes such as Kπ and thus the hadronic resonance K∗. In this
work, we approach Kπ scattering on a domain-wall Nf = 2 + 1 RBC-UKQCD ensemble at a
physical pion mass. We use the distillation method within Grid and Hadrons software to compute
sets of operator basis. That allows solving an eigenvalue problem to extract the low-energy finite-
volume spectra, which are then translated into scattering information. We update the state of the
calculation by reviewing the smearing process, outlining the variational analysis and concluding
by showing preliminary data.
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1. Introduction

Lattice QCD is formulated on Euclidean space-time and simulations always take place on finite
volumes, which means that there is no way of obtaining infinite-volume scattering information
directly from the lattice. We only have access to the Euclidean spectrum of the theory. Nevertheless,
an indirect connection between the spectrum of a finite-volume Euclidean theory and the scattering
amplitude of the correspondent infinite-volume Minkowski theory was established already in the
1980s [1, 2] andwas further developed over the years [3–5]. Moreover, latticeQCD is able to address
hadronic resonances by studying the scattering phase shift obtained from such finite-volume analysis
[6].

The number of lattice studies of hadronic resonances has increased over the last years but
still is in a development stage [7]. As we approach physical pion masses at fixed mπL ∼ 4,
the number of energy levels in the regime of elastic scattering decreases. This further motivates
the inclusion of moving frames on the calculation in order to satisfactorily constrain scattering
amplitude parametrisations. In this work we will be interested in studying I = 1/2, P-wave Kπ
scattering and thus the K∗(892) resonance at a physical pion mass. This calculation was addressed
previously at higher pion masses by other collaborations [8–11].

Another clear difficulty of scattering studies at physical pion mass is its computational cost. As
we decrease mπ , the physical spatial extension L must be increased to keep exponentially suppressed
finite-volume effects under control. For scattering studies, it is crucial to have access to a reasonable
operator basis in order to use variational analysis methods, and for this we use distillation to smear
quark fields and compute lattice correlators [12, 13].

In a previous study [14], using an RBC-UKQCD Nf = 2 + 1 domain-wall fermion lattice with
mπ ≈ 139 MeV and mK ≈ 499 MeV and a 483 × 96 volume [15], we tuned the distillation setup
based on the smearing profile and signal of simple correlators. There, we concluded that using
exact distillation with 64 eigenvectors of the 3D-covariant Laplacian was the best compromise for
carrying out this Kπ scattering calculation.

We use Grid as the data parallel C++ library for the lattice computations and Hadrons as the
workflow management system for the measurements [16, 17], open-source and free software. The
efficient computation of meson fields at manageable storage cost demanded the writing of dedicated
distillation code within Grid and Hadrons, which is being documented as well [18]. Such distillation
code was also showcased in Refs. [14, 19, 20].

2. Distillation

To compute the correlator data necessary to extract the finite-volume energy spectrum, we use
the so-called distillation method [12, 13]. Distillation involves a combination of link smearing and
3D-Laplacian (Lap) quark smearing, which are both gauge covariant by construction. Given the
gauge-covariant 3D-Laplacian ∇2 [12] eigenvalues and eigenvectors on a certain time slice, namely

− ∇2vk(t) = λk(t)vk(t), k = 1,2, . . . , 0 < λ1 < λ2 < . . . . (1)
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the distillation smearing operator is defined as a projector onto the low-mode subspace of −∇2, i.e.

S(t) =
Nvec∑
k=1

vk(t)vk(t)†. (2)

The distillation operator defines the smeared quark field through ψ(t) → S(t)ψ(t). The suppression
of short-distance modes is desirable as they do not affect low-energy physical signals in hadron
correlation functions.

From appropriately defined solve (or sink) ϕ and source % vectors [14], we can write an
estimator for the quark propagator as

Sxy(t f , t0) = ϕ(x, t f )%(z, t0)†. (3)

Exact distillation can effectively be described using these distillation objects by using trivial "noise"
vectors (all entries equal to one) and full-dilution in all indices. We can then write arbitrary traces
of propagators in terms of ϕ and ϕ, e.g.

tr[ΓS(x, y)Γ′S′(y, x)] = tr[%(y)†Γϕ(y) %(x)†Γ′ϕ′(x)] = tr[MΓ(%, ϕ; y) MΓ′(%, ϕ′; x)], (4)

where MΓ(%ϕ; x) = %(x)†Γϕ(x) are the building blocks of correlation functions, called meson
fields.

Following the distillation workflow as outlined in Ref. [14], we computed strange and light
inversions on every time slice. Then we generate meson fields of the kind M(%ϕ; x). Based on the
study done in Ref. [14], we carry out all measurements using Nvec = 64.

3. Variational Analysis

To perform a lattice scattering calculation based on the finite-volume formalism, we need to
obtain towers of low-lying energies in several moving frames. Defining a variational problem and
solving a generalized eigenvalue problem (GEVP) applied to a correlator matrix is a possible way
to proceed [7]. Multi-hadron correlators are suitable for being computed within distillation, as we
can combine the same Laplacian-projected propagators with different interpolators and generate
correlators with potentially different overlaps to the various states of interest.

We use an operator basis containing bilinear (ψ̄Γψ ′) and two-hadron operators. In particular,
we use OV = s̄γiu as the single vector interpolator. For the pseudoscalar states, we use the
conventional π+, π0,K+,K0 interpolators with Γ = γ5, which combined and projected to isospin
I = 1/2, I3 = 1/2, yield

OKπ(p1,p2) =

√
1
3

OK+(p1)Oπ0(p2) +

√
2
3

OK0(p1)Oπ+(p2). (5)

For a moving frame with total spatial momentum P, the individual momenta obey P = p1 + p2. All
operators obeying |P|2 ≤ 4 and |p1 |

2, |p2 |
2 ≤ 4 in units of 2π/L were included.

These operatorsmust transformaccording to the irreducible representationsΛ of the appropriate
little group G on the lattice. This is done through the projection formula in momentum space [21]

PΛO(p1,p2, ...) =
dΛ
nG

nG∑
i=1

χΛ∗
(i) Ŝ(i)O(S(i)p1,S(i)p2, ...)Ŝ(i)† ≡ OΛ(p1,p2, ...), (6)
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where S are the elements of the little group G of order nG . Such formula uses the character χΛ of
irrep Λ with dimension dΛ.

In this work, we use only the irreps Λ with a leading occurrence in continuum P-wave (J = 1
irreps) and where odd and even partial waves do not mix [22], i.e. {P,Λ} = {[000],T1u}, {[001],E},
{[110],B1}, {[110],B2}, {[111],E} and {[002],E}.

G P Λ J

Oh [000] T1u 1,3, . . .
C4v [001],[002] E 1,2, . . .

C2v [110]
B1 1,2, . . .
B2 1,2, . . .

C3v [111] E 1,2, . . .

Table 1: Occurrence of continuum total angular momentum J in the Oh subgroup irreps used here [21].

The GEVP was solved using a fixed-t0 method defined by

C(t)u(n)(t, t0) = λ(n)(t, t0)C(t0)u(n)(t, t0), (7)

where, after some testing, we chose to take t0 = 3. Solving this equation and using effective energies
of the form

aE (n)eff (t) = log
λ(n)(t, t0)

λ(n)(t + 1, t0)
(8)

yield the levels in Fig. 1.

Note that, apart from the lowest levels in {[110],B2} and {[111],E}, all energies are above
the Kππ threshold, which means that in principle they would not be treatable by the 2-particle
Lüscher’s analysis. However, we stress that the experimental K∗(892) → Kππ decay fraction is
O(10−4) [23], meaning that the 3-particle corrections will most probably be negligible. This issue
will be addressed in more detail in a later.

To extract the energy levels from the GEVP data, we do correlated fits of each eigenvalue
λ(n)(t, t0) to a single exponential. The choice of fit range is done by a scan over the time extension
with an acceptable signal-to-noise ratio. Then, using anAICweighting of the correlated fits [24, 25],
we choose fit ranges yielding the results illustrated in Fig. 2, where we picked only levels with
reasonable quality of fit. At this level of statistics, we also do a thorough visual inspection of the
effective energies plateaus against the selected fit ranges.
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Figure 1: Preliminary effective energy plot of GEVP correlators in all irreps considered. The energy axis is
kept fixed along all frames, but the time axis is shifted. We removed the highest level of each GEVP, as this
is the one receiving the uncontrolled excited state contributions [26].

Figure 2: Preliminary best AIC fit results (grey band) overlaid with respective effective energies on the
lowest GEVP levels. The χ2/ndof is shown below each fit.

4. Finite-volume Analysis

In our case, the 2-particle quantisation condition for pure P-wave scattering for each moving
frame and irrep can be written in the form [22]

tan δ1(p∗) = φP,Λ(q), (9)

where p∗ = |p∗ | refers to the center-of-mass momentum of K and π, and q = p∗L/(2π). The
finite-volume function φP,Λ depends on the generalized zeta function, which can be evaluated
numerically.
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By feeding the results illustrated in Fig. 2 into equation (9), we obtain the preliminary P-wave
phase shift plot of I = 1/2 Kπ scattering at a physical pion mass in Fig. 3.

Figure 3: Preliminary phase shift plotted against CoM energy obtained from equation (9), with irreps and
moving frames distinguished. The dashed vertical line represents the experimental value for the K∗(892)
mass in lattice units [23].

5. Conclusions and Outlook

Using exact distillation at Nvec = 64, we have computed multi-hadron correlators suitable for
a Kπ scattering study at physical pion mass. We have performed a GEVP to all pure P-wave
irreps on moving frames with total momenta up to |P|2 = 4(2π/L)2 and performed correlated fits
of the eigenvalues to a single exponential. The energy levels obtained were fed to the 2-particle
quantisation, yielding the preliminary phase shift results for I = 1/2, Kπ scattering.

As an immediate next step, wewill increase statistics to cover thewhole physical point ensemble
used here, allowing for better control of the fits. This will enable a reliable extraction of K∗(892)
resonance parameters by an appropriate fit to the spectrum. In future work, we will also include the
irreps mixing S and P waves, where the so-called κ resonance is expected to show up.
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