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Many mesons with properties incompatible with a 𝑐𝑐 structure have already been discovered, e.g.
the 𝑍𝑐 mesons with isospin 1. We investigate the spectrum of exotic charmonium-like mesons
using lattice QCD. The focus is on 𝑐𝑐𝑞𝑞 states with 𝐽𝑃𝐶 = 1+± and isospin 1. This is the first
study of four-quark states with these quantum numbers, a non-zero total momentum and two
different lattice volumes. We extract the energy levels and determine the scattering length for
𝐷𝐷̄∗ scattering close to the threshold using Lüscher’s formalism. Our preliminary results show
that the energy shifts for eigenstates dominated by 𝐷𝐷̄∗ are very small in the 1++ channel and
consistent with zero in the 1+− channel.
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1. Introduction

The first signal of a nonconventional meson was the discovery of the 𝜒𝑐1(3872) by Belle
in 2003 [1]. Its quantum numbers 𝐼 (𝐽𝑃𝐶) = 0(1++) are compatible with a naive 𝑐𝑐 structure,
however, its mass and decay properties point to a more complex nature. The clearest evidence that
a resonance containing 𝑐𝑐 cannot be described as a simple quark-antiquark state is when it decays
into a charged final state. The first such charged structure in the charmonium sector was discovered
in 2013 when the BESIII and Belle collaborations observed the 𝑍+

𝑐 (3900) in the 𝜋+𝜋−𝐽/𝜓 invariant
mass spectrum [2, 3]. This observation was confirmed by CLEO-c [4]. The quark content of the
𝑍+
𝑐 (3900) is 𝑐𝑐𝑑𝑢 (𝐼𝑧 = 1). Its neutral partner 𝑍0

𝑐 (3900) has also been seen [4, 5]. The invariant
mass of the 𝑍𝑐 (3900) lies slightly above the 𝐷𝐷̄∗ threshold suggesting that it could be observed
in the decay channel (𝐷𝐷̄∗)𝐼=1. This was confirmed by the BESIII collaboration [6, 7]. The
current consensus is that 𝑍𝑐 (3900) is a 1(1+−) state with mass 𝑀 = 3887.1 ± 2.6 MeV and width
Γ = 28.4 ± 2.6 MeV [8]. Higher up in the spectrum, the 𝑍𝑐 (4200) [9] and the 𝑍𝑐 (4430) [10–13],
have also been seen.

Different binding mechanisms have been suggested for the 𝑍𝑐 (3900): it could be a hadronic
molecule, have a compact tetraquark structure or result from a simple kinematic effect linked to
the opening of meson-meson thresholds. Many studies involving different effective field theory
approaches have been performed. Combining local hidden gauge and heavy quark spin symmetry,
ref. [14] finds that the exchange of heavy vector mesons gives the most significant contribution.
The resulting scattering amplitude contains information about a state with a mass between 3869 and
3875 MeV and a decay width of around 40 MeV. Another work [15], which studies the invariant
mass distribution of the 𝐽/𝜓𝜋 and 𝐷𝐷̄∗ channels suggests that the 𝑍𝑐 (3900) signal may originate
from a resonance or a virtual state, depending on whether the 𝐷𝐷̄ 𝑠-wave interaction employed is
energy dependent or independent, respectively. If the peak is produced by a virtual state, it must
have a hadronic molecular nature. The authors of [16] come to similar conclusions. An analysis
of the S-matrix poles in the framework of the constituent quark model involving coupled channels
[17] connects the 𝑍𝑐 (3900) signal with the presence of a virtual state that can be seen as a 𝐷𝐷̄∗

threshold cusp, i.e. a feature caused by the opening of a new threshold. This analysis is consistent
with the interpretation that the diagonal interaction between the 𝐷𝐷̄∗ is too suppressed to develop
resonances and that the interaction between different channels is responsible for a peak in the 𝐷𝐷̄∗,
𝐽/𝜓𝜋 invariant mass distributions.

Several lattice studies of the 𝑍𝑐 (3900) have been performed so far: two works by the HAL
QCD collaboration [18, 19] suggest the importance of cross-channel interaction, which is consistent
with the conclusions of ref. [17]. However, works which employ Lüscher’s formalism have not
been able to confirm a narrow resonance-like peak close to the threshold. This includes [20–24]
and the more recent coupled channel analysis of [25]. In particular, no additional eigenstates are
found and the energy shifts with respect to the non-interacting levels turn out to be insignificant.
Comparing results from both methods is difficult since the HAL QCD approach does not provide
information on the energy shifts.

While charmonium-like states with 1(1+−) have been discovered in experiment, no states with
1(1++) and quark content 𝑐𝑐𝑑𝑢 have been observed. Such a state would be an isospin partner of
the 𝜒𝑐1(3872). Two lattice QCD studies [26, 27], which find the state 𝜒𝑐1(3872) slightly below the
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𝐷𝐷̄∗ threshold, also do not see any new candidates in this spectrum.
In this proceedings, we report on a lattice study of charmonium-like states with quantum

numbers 1(1+±). We employ meson-meson interpolating operators that are projected on to two
different total momenta. The corresponding two-point correlation functions are calculated on two
lattices with different spatial extents. The extraction of the energy levels is challenging since we
are interested in the region near the 𝐷𝐷̄∗ threshold, which lies above several other meson-meson
thresholds, e.g., 𝐽/𝜓𝜋 and 𝜂𝑐𝜌 in the 1(1+−) channel and 𝐽/𝜓𝜌 in the 1(1++) channel.

2. Lattice details

We employ two ensembles of gauge field configurations with 𝑁f = 2 + 1 non-perturbatively
O(𝑎) improved Wilson dynamical fermions, a lattice spacing 𝑎 = 0.08636(98) (40) fm and a pion
mass 𝑚𝜋 = 280(3) MeV. The ensembles are provided by the Coordinated Lattice Simulations
consortium [28, 29]. The spatial volumes are 𝑁3

𝐿
= 243 and 𝑁3

𝐿
= 323, where we utilise 255 and

492 configurations, respectively [30]. Open boundary conditions in time are imposed [31] and the
sources of the correlation functions are located in the bulk away from the boundary. The study is
performed for a charm quark mass which is slightly larger than the physical quark mass [32].

3. Interpolating operators

The finite-volume energies are determined from the correlation matrices

𝐶𝑖 𝑗 (𝑡) = ⟨𝑂𝑖 (𝑡src + 𝑡)𝑂†
𝑗
(𝑡src)⟩ , (1)

where 𝑂𝑖 (𝑂†
𝑗
) is an interpolator that annihilates (creates) a state with certain quantum numbers.

𝑐𝑐 interpolators are not considered since we are interested in isospin 𝐼 = 1, while local diquark-
antidiquark interpolators are also omitted as they seem to have very little influence, according to
[27]. The interpolators used are of two types: charmonium-light meson, 𝐻 ( |p𝑖 |2)𝐿 ( |p 𝑗 |2), and
𝐷-meson-𝐷-meson, 𝑀̄𝑖 ( |p𝑖 |2)𝑀 𝑗 ( |p 𝑗 |2), where every 𝐻 (p𝑖), 𝐿 (p 𝑗), 𝑀̄𝑖 (p𝑖) and 𝑀 𝑗 (p 𝑗) has an
appropriate Dirac structure and is separately projected on to definite momentum p𝑖 , p 𝑗 so that the
total momentum is P = p𝑖 + p 𝑗 . The full set of interpolating operators used are given in Tables
1 and 2. They are constructed for Λ𝑃 = 𝑇+

1 and Λ = 𝐴2, which are irreducible representations
of the spatial lattice symmetry groups 𝑂ℎ (|P| = 0) and Dic4 (|P| = 1 · 2𝜋/𝐿), respectively. The
quantum numbers contributing to the chosen irreducible representations are not only 𝐽𝑃 = 1+ but
also unwanted higher 𝐽 = 3, . . . and, in the case of Λ = 𝐴2, 𝐽𝑃 = 0−, 2−. The Wick contractions
are evaluated using the distillation method [33] with 90 (100) Laplacian eigenvectors for 𝑁𝐿 = 24
(32).

4. Preliminary results

4.1 Energy levels

We extract energy levels 𝐸 lat
𝑛 from single-exponential fits to the eigenvalues 𝜆 (𝑛) (𝑡) ∝ 𝑒−𝐸

lat
𝑛 𝑡

of the generalized eigenvalue problem [34]. They are shown in Fig. 1 for 1++ and Fig. 2 for 1+−.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
8
0

Charmonium-like states with 𝐽𝑃 = 1+ and isospin 1 Mitja Sadl

|P|2 = 0, Λ𝑃𝐶 = 𝑇+−
1 |P|2 = 1, Λ𝐶 = 𝐴−

2
𝐽/𝜓(0)𝜋(0) ×2 𝐽/𝜓(1)𝜋(0) ×2
𝐽/𝜓(1)𝜋(1) ×2 𝐽/𝜓(0)𝜋(1) ×2
𝐽/𝜓(2)𝜋(2) ×3 𝐽/𝜓(2)𝜋(1) ×2

𝑁𝐿 = 24 𝜂𝑐 (0)𝜌(0) 𝐽/𝜓(1)𝜋(2) ×2
15 interpolators 𝑁𝐿 = 32 𝜂𝑐 (1)𝜌(1) ×2 𝐽/𝜓(4)𝜋(1)

21 interp. 𝐷̄∗(0)𝐷 (0) ×2 𝜂𝑐 (1)𝜌(0) 𝑁𝐿 = 24
𝐷̄∗(1)𝐷 (1) ×2 𝜂𝑐 (0)𝜌(1) 21 interp.
𝐷̄∗(0)𝐷∗(0) 𝜂𝑐 (2)𝜌(1) ×2
𝐽/𝜓(3)𝜋(3) ×2 𝐷̄∗(0)𝐷 (1) ×2
𝜂𝑐 (2)𝜌(2) ×3 𝐷̄∗(1)𝐷 (0) ×2
ℎ𝑐 (1)𝜋(1) 𝐷̄∗(1)𝐷 (2) ×2

𝐷̄∗(2)𝐷 (1) ×2

Table 1: Table of interpolators transforming under irreducible representations Λ𝑃𝐶 = 𝑇+−
1 and Λ𝐶 = 𝐴−

2
which correspond to 𝐽𝑃𝐶 = 1+−. All momenta here are in units of 2𝜋/𝐿.

|P|2 = 0, Λ𝑃𝐶 = 𝑇++
1 |P|2 = 1, Λ𝐶 = 𝐴+

2
𝑁𝐿 = 24 𝐽/𝜓(0)𝜌(0) 𝜂𝑐 (1)𝑎0(0)

5 interpolators 𝐷̄∗(0)𝐷 (0) ×2 𝜒𝑐0(1)𝜋(0)
𝑁𝐿 = 32 𝐷̄∗(1)𝐷 (1) ×2 𝜒𝑐0(0)𝜋(1)
10 interp. 𝐽/𝜓(1)𝜌(1) ×3 𝐽/𝜓(1)𝜌(0) 𝑁𝐿 = 24

𝜒𝑐0(1)𝜋(1) 𝐽/𝜓(0)𝜌(1) 13 interp.
𝜒𝑐1(1)𝜋(1) 𝐷̄∗(0)𝐷 (1) ×2 𝑁𝐿 = 32

𝐷̄∗(1)𝐷 (0) ×2 17 interp.
𝐷̄∗(1)𝐷 (2) ×2
𝐷̄∗(2)𝐷 (1) ×2
𝜂𝑐 (0)𝑎0(1)
𝜒𝑐0(2)𝜋(1)
𝜒𝑐0(4)𝜋(1)
𝜒𝑐1(2)𝜋(1)

Table 2: Table of interpolators transforming under irreducible representations Λ𝑃𝐶 = 𝑇++
1 and Λ𝐶 = 𝐴+

2
which correspond to 𝐽𝑃𝐶 = 1++. All momenta here are in units of 2𝜋/𝐿.

Many states lie below the lowest 𝐷𝐷̄∗ levels, in particular, for non-zero total momentum and the
larger lattice volume. The energy shifts of states dominated by 𝐷𝐷̄∗ are very small in the 1++ case
and negligible within the present uncertainties in the 1+− case. Despite the light mesons 𝜌 and
𝑎0 being resonances, they have been treated as stable particles. In the energy level plots in Figs.
1 and 2, one can see that eigen-energies dominated by interpolators containing the 𝜌 meson have
significant uncertainties.

4.2 𝐷𝐷̄∗ scattering

To simplify the procedure, we focus on 𝐷𝐷̄∗ scattering near the threshold. Its coupling to other
channels (𝐽/𝜓𝜋, 𝜂𝑐𝜌, 𝐽/𝜓𝜌) is neglected when studying the scattering amplitudes. The spectrum is
expected to be dominated by the ℓ = 0 partial wave. The finite volume eigen-energies are connected
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Figure 1: Results for 𝐼 (𝐽𝑃𝐶 ) = 1(1++). The two panes on the left represent the energy levels (points,
𝐸 lat
𝑛 ) and non-interacting energies (lines, 𝐸 lat

𝐻𝑖 (p𝑖) + 𝐸
lat
𝐻 𝑗 (p 𝑗 ) ). From left to right the panes represent 𝑇++

1 with
𝑁𝐿 = 24 and 𝑇++

1 with 𝑁𝐿 = 32, respectively. Numbers within the square brackets refer to the multiplicity of
certain non-interacting levels. The plot on the right shows 1/(𝑝 cot (𝛿)) where the colors of the states match
those in the spectra, and 𝛿 is the s-wave 𝐷𝐷̄∗ scattering phase shift with approximations stated in subsection
4.2. Results are shown with 1𝜎 statistical uncertainty.

Figure 2: Results for 𝐼 (𝐽𝑃𝐶 ) = 1(1+−). The three panes on the left represent the energy levels (points,
𝐸 lat
𝑛 ) and non-interacting energies (lines, 𝐸 lat

𝐻𝑖 (p𝑖) + 𝐸
lat
𝐻 𝑗 (p 𝑗 ) ). From left to right the panes represent 𝑇+−

1 with
𝑁𝐿 = 24, 𝑇+−

1 with 𝑁𝐿 = 32 and 𝐴−
2 with 𝑁𝐿 = 24, respectively. Numbers within the square brackets refer to

the multiplicity of certain non-interacting levels. The plot on the right shows 1/(𝑝 cot (𝛿)) where the colors
of the states match those in the spectra, and 𝛿 is the s-wave 𝐷𝐷̄∗ scattering phase shift with approximations
stated in subsection 4.2. Results are shown with 1𝜎 statistical uncertainty.
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to the infinite volume s-wave 𝐷𝐷̄∗ scattering phase shift 𝛿 via

𝑝 cot (𝛿(𝑝)) =
2Zd

00(1, (
𝑝𝐿

2𝜋 )
2)

𝛾
√
𝜋𝐿

, (2)

where higher partial waves are omitted, and the momentum 𝑝 = |p𝑐𝑚 | in the center-of-mass frame
is derived from

𝐸cm =

√︃
|p𝑐𝑚 |2 + 𝑚2

𝑖
+
√︃
|p𝑐𝑚 |2 + 𝑚2

𝑗
, where 𝐸cm =

√︃
𝐸2
𝑛 − |P|2 . (3)

Discretization effects modify the dispersion relation, which deviates from the continuum one. To
mitigate this, we use the following energies

𝐸𝑛 = 𝐸 lat
𝑛 + 𝐸con

𝐻𝑖 (p𝑖) + 𝐸
con
𝐻 𝑗 (p 𝑗 ) − 𝐸

lat
𝐻𝑖 (p𝑖) − 𝐸

lat
𝐻 𝑗 (p 𝑗 ) , (4)

where 𝐸 lat
𝐻 (p) and 𝐸con

𝐻 (p) = ( |p|2 + 𝑚2
𝐻
)1/2 are single-hadron energies. Within the aforementioned

approximations, the scattering amplitude can be parametrized in terms of 𝛿

𝑇 =
1

𝑝 cot (𝛿(𝑝)) − 𝑖𝑝 . (5)

Assuming elastic scattering near the threshold, one can perform the effective range expansion
𝑝 cot (𝛿(𝑝)) = 1/𝑎0 + 𝑟0𝑝

2/2+ O(𝑝4). Our preliminary results are presented in Figs. 1 and 2. One
can infer the smallness of the interaction from the small 1/(𝑝 cot (𝛿)) values, which are zero in the
non-interacting limit.

5. Conclusion and outlook

We have extracted the spectrum of charmonium-like states with 1(1+). This is the first study
considering hadronic states with these quantum numbers, a non-zero total momentum and two
different lattice volumes. The energy shifts are small, which is consistent with conclusions from
previous lattice QCD studies using the Lüscher method. This disfavors a significant attraction
between 𝐷 and 𝐷̄∗. Experimental evidence and findings from this preliminary study perhaps
suggest that a significant coupling between channels causes the existence of 𝑍𝑐. In the near future,
we will make a comparison with phenomenological approaches and put constraints on them. In
particular, we aim to compare our lattice eigen-energies with the energy levels that different models,
such as [14, 17], predict.
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