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1. Introduction

The electromagnetic form factors of the nucleon are fundamental probes of its structure that
map the charge distribution of its constituent quarks. Electron scattering experiments can provide
a precise determination of the nucleon electromagnetic form factors with experiments, having been
carried out since the fifties, continuing at experimental facilities at Mainz and JLab. In the limit
of zero momentum transfer 𝑄2, the slope of the electric, 𝐺𝐸 (𝑄2), and magnetic, 𝐺𝑀 (𝑄2), form
factors is related to the electric and magnetic root mean square (rms) radii. Their value at 𝑄2 = 0
yields the electric charge and magnetic moment, respectively.

In this contribution, we present a calculation of the electromagnetic form factors of the nucleon
using lattice QCD on three ensembles of twisted mass clover-improved twisted mass fermions with
two degenerate light, strange, and charm quarks 𝑁f=2+1+1 with masses tuned to their physical val-
ues (physical point). The three ensembles have similar physical spatial volume of 𝐿3 ≃ (5.5 fm)3

and different lattice spacings, namely 𝑎 =0.08, 0.068, and 0.057 fm, allowing for a continuum
extrapolation at the physical point. Furthermore, calculation of the disconnected quark loop con-
tributions allows the extraction of the individual proton and neutron form factors, as well as the
strange form factors. Excited state effects are assessed using several sink-source time separations
in the range 0.8 fm - 1.6 fm, exponentially increasing statistics with the separation.

2. Lattice setup

2.1 Matrix elements

The Electromagnetic form factors are obtained from the matrix element of the vector operator
O𝑉

𝜇 :

⟨𝑁 (𝑝′, 𝑠′) |O𝑉
𝜇 |𝑁 (𝑝, 𝑠)⟩ =

√︄
𝑚2

𝑁

𝐸𝑁 ( ®𝑝′)𝐸𝑁 ( ®𝑝) �̄�𝑁 (𝑝′, 𝑠′)Λ𝜇 (𝑞2)𝑢𝑁 (𝑝, 𝑠)

with 𝑁 (𝑝, 𝑠) a nucleon state of momentum 𝑝 and spin 𝑠, 𝐸𝑁 ( ®𝑝) = 𝑝0 its energy and 𝑚𝑁 its
mass, 𝑢𝑁 a nucleon spinor and, 𝑞 = 𝑝′ − 𝑝, the momentum transfer from initial (𝑝) to final (𝑝′)
momentum. The matrix element decomposes into the Dirac 𝐹1 and Pauli 𝐹2 form factors as follows,

Λ𝜇 (𝑞2) = 𝛾𝜇𝐹1(𝑞2) +
𝑖𝜎𝜇𝜈𝑞

𝜈

2𝑚𝑁

𝐹2(𝑞2), (1)

which can also be expressed in terms of the nucleon electric 𝐺𝐸 and magnetic 𝐺𝑀 Sachs form
factors via 𝐺𝐸 (𝑞2) = 𝐹1(𝑞2) + 𝑞2

(2𝑚𝑁 )2 𝐹2(𝑞2) and 𝐺𝑀 (𝑞2) = 𝐹1(𝑞2) + 𝐹2(𝑞2).

2.2 Lattice extraction of form factors

On the lattice, the required matrix elements are obtained from combinations of two- and
three-point correlation functions,

𝐶 (Γ0, ®𝑝; 𝑡𝑠, 𝑡0)=
∑︁
®𝑥𝑠

Tr
[
Γ0⟨𝐽𝑁 (𝑥𝑠)𝐽𝑁 (𝑥0)⟩

]
𝑒−𝑖 ( ®𝑥𝑠− ®𝑥0 ) · ®𝑝 and (2)

𝐶𝜇 (Γ𝜈 , ®𝑝, ®𝑝′; 𝑡𝑠, 𝑡ins, 𝑡0)=
∑︁
®𝑥ins, ®𝑥𝑠

𝑒𝑖 ( ®𝑥ins− ®𝑥0 ) · ®𝑞𝑒−𝑖 ( ®𝑥𝑠− ®𝑥0 ) · ®𝑝 ′
Tr

[
Γ𝜈 ⟨𝐽𝑁 (𝑥𝑠) 𝑗𝜇 (𝑥ins)𝐽𝑁 (𝑥0)⟩

]
(3)
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respectively, with 𝐽 the interpolating field of the nucleon, 𝑥0 = (𝑡0, ®𝑥0) the source, 𝑗𝜇 the electro-
magnetic current, 𝑥ins = (𝑡ins, ®𝑥ins) the insertion, and 𝑥𝑠 = (𝑡𝑠, ®𝑥𝑠) the sink. Γ𝜈 is a projector acting
on spin indices, with Γ0=

1
2 (1+𝛾0) and Γ𝑘=Γ0𝑖𝛾5𝛾𝑘 .

We form a ratio of three- to two-point functions [1] so as to cancel unknown overlaps and
energy exponentials. The setup we use throughout is for the sink to be at rest ( ®𝑝′ = 0) which
constrains ®𝑝 = −®𝑞 and for brevity we will stop from indicating the argument ®𝑝′. After taking
the large time limit, the ratio yields the nucleon ground state matrix element, Π𝜇 (Γ𝜈; ®𝑝), namely
𝑅𝜇 (Γ𝜈; ®𝑝; 𝑡𝑠; 𝑡ins)

𝑡𝑠−𝑡ins≫−−−−−−→
𝑡ins≫

Π𝜇 (Γ𝜈; ®𝑝). Since statistical errors increase exponentially with time
separation, we cannot take 𝑡ins and 𝑡𝑠 arbitrarily large and, therefore, we evaluate the convergence
to the ground state using the following methods:

• Plateau method: We identify a time-independent window (plateau) as a function of 𝑡ins and fit to
extract the plate value. We seek convergence of the plateau value as we increase 𝑡𝑠 to extract the
desired matrix element.

• Two-state fit method: We fit the two- and three-point functions considering contributions up to
the first excited state, i.e. using the expressions

𝐶 ( ®𝑝, 𝑡𝑠) =
1∑︁
𝑖=0

𝑐𝑖 ( ®𝑝)𝑒−𝜀𝑖 ( ®𝑝)𝑡𝑠 and (4)

𝐶𝜇 (Γ𝜈 , ®𝑝, 𝑡𝑠, 𝑡ins) =
1∑︁

𝑖, 𝑗=0
𝐴
𝜇

𝑖 𝑗
(Γ𝜈 , ®𝑝)𝑒−𝐸𝑖 (0) (𝑡𝑠−𝑡ins )−𝐸 𝑗 ( ®𝑝)𝑡ins , (5)

where 𝐴
𝜇

𝑖 𝑗
are proportional to the matrix element ⟨𝑖 |𝑂𝜇 | 𝑗⟩, with |0⟩ and |1⟩ denoting the ground

and first exited state, 𝐸0 and 𝐸1 their energies, respectively, and 𝜀0( ®𝑝) and 𝜀1( ®𝑝) the ground
and first excited state energies fitted from the two-point function. The desired matrix element is
obtained via Π𝜇 (Γ𝜈; ®𝑝) = 𝐴

𝜇

00 (Γ𝜈 , ®𝑝)√
𝑐0 (0)𝑐0 ( ®𝑝)

. In our fitting procedure, we take the ground state to be the

nucleon in both two- and three-point function, and therefore assume 𝐸0(0) = 𝜀0(0) = 𝑚𝑁 and
𝐸0( ®𝑝) = 𝜀0( ®𝑝) = 𝐸𝑁 =

√︃
𝜀2

0 (0) + ®𝑝2, but in general we make no assumptions this is the case for
the excited state, i.e. 𝐸1(0) ≠ 𝜀1(0) and 𝐸1( ®𝑝) ≠ 𝜀1( ®𝑝).

• Summation method: we sum the ratio over 𝑡ins, [2, 3] which for large 𝑡𝑠 yields: 𝑅sum
𝜇 (Γ𝜈; ®𝑝; 𝑡𝑠) =∑

𝑡ins 𝑅𝜇 (Γ𝜈; ®𝑝; 𝑡𝑠; 𝑡ins)
𝑡𝑠≫−−−→ 𝑐 + 𝑡𝑠Π𝜇 (Γ𝜈; ®𝑝). We carry out a linear fit with 𝑡𝑠 in order to extract

the desired matrix element.

Having Π𝜇 (Γ; ®𝑞), one can construct combinations of current insertion directions (𝜇) and
projections Γ𝜇 to isolate the two form factors. Namely, we have:

Π0(Γ0; ®𝑞) =C 𝐸𝑁 + 𝑚𝑁

2𝑚𝑁

𝐺𝐸 (𝑄2), Π𝑖 (Γ𝑘 ; ®𝑞) = C
𝜖𝑖 𝑗𝑘𝑞 𝑗

2𝑚𝑁

𝐺𝑀 (𝑄2), and

Π𝑖 (Γ0; ®𝑞) =C 𝑞𝑖

2𝑚𝑁

𝐺𝐸 (𝑄2), (6)

where 𝑄2 = −𝑞2, C =

√︂
2𝑚2

𝑁

𝐸𝑁 (𝐸𝑁+𝑚𝑁 ) , and the projectors Γ0 =
1+𝛾0

4 and Γ𝑘 = 𝑖𝛾5𝛾𝑘Γ0, with
𝑖, 𝑘 = 1, 2, 3.
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2.3 Lattice setup and excited state analysis

We use three 𝑁f=2+1+1 ensembles simulated using twisted mass clover-improved fermions as
indicated in Table 1. Details on the simulation and scale setting for these ensembles can be found in
Refs. [4] and [5]. For the connected contributions to the three-point correlation functions we analyze

Table 1: We show details of the ensembles analyzed, including their short name (first column), lattice
volume (second column), lattice spacing in fm (third column), number of configurations analyzed (fourth
column), sink-source separations (𝑡𝑠/𝑎) analyzed for the connected three-point functions with number of
source positions per configuration (𝑁src) indicated as a subscript (fifth column), and number of source
positions per configuration analyzed for the two-point function (𝑁2p

src).

Ens. ID Vol. 𝑎 [fm] 𝑁conf (𝑡𝑠/𝑎)𝑁src 𝑁
2p
src

cB64 64×128 0.080 750 81, 102, 124, 146, 1616, 1848, 2064 264
cC80 80×160 0.068 400 61, 82, 104, 1210, 1422, 1648, 1845, 20116, 22246 600
cD96 96×192 0.057 500 81, 102, 124, 148, 1616, 1832, 2064, 2216, 2432, 2664 368

multiple sink-source separations increasing the number of source-positions per configuration as
indicated in Table 1. In addition, we have analyzed an increased number of statistics for the two-
point functions, also indicated in Table 1, which are used to increase statistics for the disconnected
contributions as well as to increase the robustness of the two-state fits. An example of the analysis
carried out for the connected contributions is shown in Fig. 1 for the cC80 ensemble and considering
one momentum transfer vector ®𝑞 = 2𝜋

𝐿
®𝑛, namely the first non-zero case ®𝑛2 = 1. In particular we

compare the summation method with three variants of the two-state fit method and observe that the
fits in which we allow the electromagnetic three-point and the two-point functions to have different
energies (crosses) yield large error-bars. Including the temporal component of the axial matrix
element (𝐴0) as a third three-point function, motivated by Ref. [6] in which it was suggested this has
high overlap with the 𝜋-N excited state contamination, yields more robust fits (filled circles) which
are in tension to the results obtained when assuming the same spectrum in three- and two-point
functions (open circles). In what follows we use the results for this variant of the two-state fit for
the connected contributions.

For the disconnected quark loops, we use a combination of eigenvalue deflation [7], hierarchi-
cal probing [8], and spin and color dilution [9], as explained in Refs. [10–12]. For the connected
electromagnetic form factors, we use the conserved vector current, which does not require renor-
malization, while for the disconnected case, we use the local vector current. The renormalization for
the local vector current is carried out non-perturbatively in the RI’-MOM scheme [13] employing
momentum sources, following the procedures described in Refs. [14, 15]. Details regarding the
methods used for obtaining the disconnected contributions can be found in Refs. [10] and [11].

For the case of the disconnected contributions, the larger statistical errors do not allow fitting
with the excited state energy different in two- and three-point function for all 𝑄2 values. Therefore,
as shown in Fig. 2, we restrict to the summation and two-state fit method with 𝐸1( ®𝑝) = 𝜀1( ®𝑝). As
can be seen, the two methods agree and we take the summation method result for the disconnected
in what follows.
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tins ts/2 [fm]
0.8
0.9 cC80

Gu
d

E

ts [fm]

~n2 = 1

tlows  [fm]

tins ts/2 [fm]
3
4

Gu
d

M

ts [fm] tlows  [fm]

0.5 0.0 0.5
tins ts/2 [fm]

2
0
2

Au
d

0

1 2
ts [fm]

0.4 0.6 0.8
tlows  [fm]

0.4 0.6 0.8
tlows  [fm]

0.4
0.5aE

1 aE1(0)

0.4 0.6 0.8
tlows  [fm]

aE1(~n2)

Figure 1: Example analysis of the isovector three-point function. Here we show the first non-zero momentum
transfer for the cC80 ensemble. In the left column of the three first rows we show the ratios that yield 𝐺𝐸 ,
𝐺𝑀 , and 𝐴0, indicating with different colors the different 𝑡𝑠/𝑎 (see Table 1). In the central column, we plot
the plateau fits to each 𝑡𝑠 and in the right column the summation method fits (green triangles) and two-state
fits as a function of the smallest 𝑡𝑠 entering the fit. The two-state fits are carried out i) assuming the same
energies for the ground and first excited states in two- and three-point function (open circles), ii) allowing
different energies between two- and three-point function (crosses), and iii) as in ii) but also including the fit
to 𝐴0 as an additional three-point function. In the bottom row we show the fitted excited state energy for both
zero (𝑎𝐸1 (0)) and finite (𝑎𝐸1 (®𝑛2)) momentum as obtained from ii) and iii) while the bands denote the result
from i).

0.0 0.2 0.4 0.6
Q2 [GeV2]

0.00

0.05

0.10

0.15 Gu + dE (Q2) Two-state
Summation

0.0 0.2 0.4 0.6
Q2 [GeV2]

0.3

0.2

0.1

0.0 Gu + dM (Q2)

Figure 2: The disconnected contribution to the isovector electric (left) and magnetic (right) form factors
as a function of the momentum transfer 𝑄2 for the cC80 ensemble. We compare results obtained using the
summation method (filled circles) and the two-state fit method when taking the excited state energy in the
two- and three-point function to be the same (open circles).
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3. Results

Results for the isovector form factors and the disconnected contributions to the isoscalar form
factors are summarized in Fig. 3 for the three ensembles listed in Table 1. To obtain our preliminary
result for the continuum limit of the form factors, we carry out a linear interpolation in 𝑄2 of the
data for the cB64 and cD96 ensembles to the 𝑄2 values of the cC80 ensemble, our intermediate
lattice spacing. With the three ensembles at common 𝑄2 we carry out a linear extrapolation in 𝑎2

to 𝑎 = 0, also shown in Fig. 3. As can be seen in Fig. 3, the continuum extrapolation leads to lower
values of the form factors, for both the electric and magnetic isovector form factors. Furthermore,
the largest source of uncertainty in the continuum extrapolation is propagated from the coarsest
ensemble, cB64, for which statistics are currently being increased.

0.0

0.2

0.4

0.6

0.8

1.0 Gu dE (Q2)

0.0 0.2 0.4 0.6 0.8
Q2 [GeV2]

0.00

0.05

0.10 Gu + d, disc.
E (Q2)

0

1

2

3

4
Gu dM (Q2) a=0.080 fm

a=0.068 fm
a=0.057 fm
a 0

0.0 0.2 0.4 0.6 0.8
Q2 [GeV2]

0.3

0.2

0.1

0.0 Gu + d, disc.
M (Q2)

Figure 3: Isovector (top row) and disconnected contribution to the isoscalar (bottom row) electric (left) and
magnetic (right) form factors of the nucleon. We show results for the cB64 (blue circles), cC80 (orange
circles), and cD96 ensembles and a linear extrapolation to the continuum (red circles) as explained in the
text.

Combining the isovector (𝑢 − 𝑑) and isoscalar (𝑢 + 𝑑) contributions, we obtain the individual
proton and neutron electric (𝐺 𝑝

𝐸
and 𝐺𝑛

𝐸
respectively) and magnetic (𝐺 𝑝

𝑀
and 𝐺𝑛

𝑀
respectively)

form factors in the flavor isospin limit via:

𝐺
𝑝

𝑋
=

1
6
𝐺𝑢+𝑑

𝑋 + 1
2
𝐺𝑢−𝑑

𝑋 and 𝐺𝑛
𝑋 =

1
6
𝐺𝑢+𝑑

𝑋 − 1
2
𝐺𝑢−𝑑

𝑋 , (7)
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with 𝑋 = 𝐸, 𝑀 . The results are shown in Fig. 4 where the same analysis as for the isovector is
carried out to obtain the continuum limit.

0.00

0.25

0.50

0.75

1.00 Gp
E(Q2)

0.00

0.05

0.10

0.15 GnE(Q2)

0.0 0.2 0.4 0.6 0.8
Q2 [GeV2]

0

1

2

3 Gp
M(Q2)

Experiment

0.0 0.2 0.4 0.6 0.8
Q2 [GeV2]

2.0

1.5

1.0

0.5

0.0 GnM(Q2)

a=0.080 fm
a=0.068 fm
a=0.057 fm
a 0
Experiment

Figure 4: Electric (top row) and magnetic (bottom row) form factors of the proton (left) and neutron (right).
The notation and the continuum extrapolation are as explained for Fig. 3. The experimental results are taken
from Ref. [16], namely for the proton case we plot with the black curve their 𝑧-expansion fit [17] while for
the neutron case we plot the quoted experimental data.

Comparing to the experimental results in Fig. 4, we see overall good agreement of our data.
In particular, for this preliminary analysis where no systematic uncertainties have been estimated,
we see that our results are at most 2𝜎 away from the experimental results at small 𝑄2 values, while
agreement is achieved within statistical errors for 𝑄2 > 0.5 GeV2.

4. Summary and outlook

We have carried out a preliminary analysis of the electromagnetic form factors of the nucleon
using three ensembles of 𝑁f=2+1+1 twisted mass fermions at three lattice spacings and with physical
pion mass. For the coarsest of the ensembles, analysis has already been previously presented for the
light [10] and strange [11] electromagnetic form factors. For the other two ensembles, this proceed-
ings contribution shows results for the first time for these quantities. Connected contributions are
calculated at multiple sink-source separations with increasing statistics and disconnected diagrams
are calculated with an increased set of two-point functions. Excited state effect are analyzed using
the summation method as well as the two-state fit method with variants that allow for a different first

7
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excited state in the two- and three-point function. For the connected contributions, a robust analysis
requires including the isovector temporal component of the axial form factor 𝐴𝑢−𝑑

0 to resolve a 𝜋N
excited state in the electromagnetic three-point function.

We carry out a preliminary, linear continuum extrapolation in 𝑎2 by interpolating the form
factors to common values of 𝑄2. Our continuum limit results, which for this preliminary study do
not have quantified systematic uncertainties, are in general agreement when compared to experiment,
with some tension not larger than 2𝜎 for smaller values of 𝑄2. Furthermore, in our analysis the
major source of statistical error in the extrapolated form factors is due to the relatively larger
statistical uncertainties in our coarsest ensemble. Analysis is under way to increase statistics for
this ensemble, as well as for the larger separations of the finest ensemble (see Table 1.

With increased statistics, we will vary our method for obtaining the continuum limit to include
allow for quantifying systematic uncertainties. Furthermore, future plans include extracting the
electric and magnetic radii and magnetic moments at the continuum limit, which will be one of the
first such calculations using only ensembles at the physical point.
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