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Polarizabilities reveal valuable information on the internal structure of hadrons in terms of charge
and current distributions. For neutral hadrons, the standard approach is the background field
method. But for a charged hadron, its acceleration under the applied field complicates the isolation
of the polarization energy. In this work, we explore an alternative method based on four-point
functions in lattice QCD. The approach offers a transparent picture on how polarizabilities arise
from quark and gluon interactions. We carry out a proof-of-concept simulation on the electric
polarizability of a charged pion, using quenched Wilson action on a 243 × 48 lattice at 𝛽 = 6.0 with
pion mass from 1100 to 370 MeV. We report results on charge radius and electric polarizability.
Our results from connected diagrams suggest that charged pion 𝛼𝐸 is due to a large cancellation
between elastic and inelastic contributions, leaving a small and positive value that has a relatively
mild pion mass dependence.
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Pion polarizability from four-point functions...

1. Introduction

Understanding electromagnetic polarizabilities has been a long-term goal of lattice QCD. The
challenge in the effort lies in the need to apply both QCD and QED principles. The standard
approach to compute polarizabilities is the background field method which has been widely used for
dipole polarizabilities. Methods to study higher-order polarizabilities have also been proposedin
this approach. Although such calculations are relatively straightforward, requiring only energy
shifts from two-point functions, there are a number of unique challenges. First, since weak fields
are needed, the energy shift involved is very small relative to the mass of the hadron (on the order
of one part in a million depending on the field strength). This challenge has been successfully
overcome by relying on statistical correlations with or without the field. Second, there is the issue
of discontinuities across the boundaries when applying a uniform field on a periodic lattice. This
has been largely resolved by using quantized values for the fields, or Dirichlet boundary conditions.
Third and more importantly, a charged hadron accelerates in an electric field and exhibits Landau
levels in a magnetic field. Such motions are unrelated to polarizability and must be disentangled from
the deformation energy on which the polarizabilities are defined. For this reason, most calculations
have focused on neutral hadrons. For charged hadrons, what happens is that the two-point correlator
does not develop single exponential behavior at large times.

In this work, we explore an alternative approach based on four-point functions in lattice QCD.
Instead of background fields, electromagnetic currents couple to quark fields to induce interactions
to all orders. It is a general approach that treats neutral and charged particles on equal footing, but
particularly suited for charged particles. The trade-off is an increased computational demand of
four-point functions. We know of two studies from a long time ago [1, 2], a recent calculation on the
pion [3], and a preliminary one on the proton [4]. A reexamination of the formalism in Ref. [2] is
recently carried out in Ref. [5] for both electric and magnetic polarizabilities of a charged pion and a
proton.

Experimentally, polarizabilities are primarily studied by low-energy Compton scattering.
Theoretically, a variety of methods have been employed to describe the physics involved, from quark
confinement model [6], to NJL model [7], to linear sigma model [8], to dispersion relations [9, 10],
to chiral perturbation theory (ChPT) [11, 12]. A recent review on pion polarizabilities can be found
in Ref. [13].

2. Methodology

In Ref. [5], a formula is derived for electric polarizability of a charged pion,

𝛼𝜋
𝐸 =

𝛼 𝑟2
𝐸

3𝑚𝜋

+ lim
𝒒→0

2𝛼𝑎
𝒒 2

∫ ∞

0
𝑑𝑡

[
𝑄44(𝒒, 𝑡) −𝑄𝑒𝑙𝑎𝑠

44 (𝒒, 𝑡)
]
. (1)

Here 𝛼 = 1/137 is the fine structure constant and 𝑎 the lattice spacing. The first term in the formula
involves the charge radius and pion mass (we will refer to this term as the elastic contribution). The
second term has the elastic contribution 𝑄𝑒𝑙𝑎𝑠

44 subtracted from the total (we will refer to this term
as the inelastic contribution). The formula will be used in discrete Euclidean spacetime but we
keep the Euclidean time axis continuous for notational convenience. Special kinematics (called
zero-momentum Breit frame) are employed in the formula to mimic low-energy Compton scattering.
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Pion polarizability from four-point functions...

The 𝑄44 is defined as the 𝜇 = 4 = 𝜈 component of the Fourier transforms,

𝑄𝜇𝜈 (𝒒, 𝑡2, 𝑡1) ≡
∑︁
𝒙2,𝒙1

𝑒−𝑖𝒒 ·𝒙2𝑒𝑖𝒒 ·𝒙1𝑃𝜇𝜈 (𝒙2, 𝒙1, 𝑡3, 𝑡2, 𝑡1, 𝑡0), (2)

where 𝑃𝜇𝜈 is a four-point function defined in position space (Ω denotes the vacuum),

𝑃𝜇𝜈 (𝒙2, 𝒙1, 𝑡3, 𝑡2, 𝑡1, 𝑡0) ≡
∑

𝒙3,𝒙0 Ω|𝜓(𝑥3) : 𝑗𝐿𝜇 (𝑥2) 𝑗𝐿𝜈 (𝑥1) : 𝜓†(𝑥0) |Ω∑
𝒙3,𝒙0 Ω|𝜓(𝑥3)𝜓†(𝑥0) |Ω

. (3)

Here 𝜓 is the interpolating field of the pion and 𝑗𝐿𝜇 the lattice version of the electromagnetic current
density. The two-point function in the denominator is for normalization. Normal ordering is used
to include the required subtraction of vacuum expectation values (VEV) on the lattice. The sums
over 𝒙0 and 𝒙3 enforce zero-momentum pions at the source (𝑡0) and sink (𝑡3). The two currents are
inserted at 𝑡1 and 𝑡2 with two possibilities of time ordering implied in the normal ordering. At large
time separations, it is dominated by the elastic contribution (𝑛 = 𝜋 term in the first sum), the form
factor 𝐹𝜋 can be determined from 𝑄44 at large time separations,

𝑄𝑒𝑙𝑎𝑠
44 (𝒒, 𝑡) = (𝐸𝜋 + 𝑚𝜋)2

4𝐸𝜋𝑚𝜋

𝐹2
𝜋 (𝒒2) 𝑒−𝑎 (𝐸𝜋−𝑚𝜋 )𝑡 . (4)

The charge radius 𝑟2
𝐸

in the formula can then be extracted from 𝐹𝜋 . Note that 𝛼𝐸 has the expected
physical unit of 𝑎3 (fm3) since 1/𝒒 2 scales like 𝑎2 and 𝑄44 and 𝑡 are dimensionless in our notation.

Wick contractions of quark-antiquark pairs in the unsubtracted part lead to topologically distinct
quark-line diagrams shown in Fig. 1. In this work, we focus on the connected contributions. The

Figure 1: Quark-line diagrams of a four-point function contributing to polarizabilities of a meson. connected
insertions (a), (b), (c); and disconnected insertions (d), (e), (f). The zero-momentum pion interpolating fields
are represented by vertical bars (wall sources).

disconnected contributions are more challenging and are left for future work.

3. Simulation details and results

Having laid out the methodology and detailed the correlation functions, we now discuss
how to numerically evaluate them in a Monte Carlo simulation in order to extract the po-
larizability. As a proof-of-principle test, we use quenched Wilson action with 𝛽 = 6.0 and
𝜅 = 0.1520, 0.1543, 0.1555, 0.1565 on the lattice 243 × 48. The pion mass determined in
our simulation is approximately 1100, 800, 600, and 370 MeV, respectively. We analyzed 500
configurations for 𝜅 = 0.1520 and 1000 configurations each for rest of the kappas. The scale of this
action has been determined in Ref. [14], with inverse lattice spacing 1/𝑎 = 2.312 GeV and kappa
critical 𝜅𝑐 = 0.15708. Dirichlet (or open) boundary condition is imposed in the time direction, while
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Pion polarizability from four-point functions...

periodic boundary conditions are used in spatial dimensions. The pion source is placed at 𝑡0 = 7 and
sink at 𝑡3 = 42 (time is labeled from 1 to 48). One current is inserted at a fixed time 𝑡1, while the
other current 𝑡2 is free to vary. We use integers {𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧} to label the discrete momentum on the
lattice, and consider five different combinations {0, 0, 0}, {0, 0, 1}, {0, 1, 1}, {1, 1, 1}, {0, 0, 2}.

3.1 Four-point correlation functions
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Figure 2: Normalized four-point functions (left panel) and their effective mass functions (right panel) from
the connected diagrams as a function of current separation at 𝑚𝜋 = 600 MeV. The 𝒒 = 0 results serve as
a check of current conservation. The results for non-zero 𝒒 between 𝑡2 = 18 and 𝑡2 = 41 will become the
basis for our analysis. The vertical gridlines indicate the pion walls (𝑡0 = 7 and 𝑡3 = 42) and the fixed current
insertion (𝑡1 = 18). The horizontal gridlines in the effective mass functions indicate the value of 𝐸𝜋 − 𝑚𝜋

where the continuum dispersion relation 𝐸𝜋 =
√︁
𝒒2 + 𝑚2

𝜋 is used.

Fig. 2 shows the raw normalized four-point functions 𝑄44 at five different values of momentum
𝒒 and at 𝑚𝜋 = 600 MeV. For comparison purposes, all points in 𝑄44 are displayed on the same linear
scale. For the effective mass function ln𝑄44(𝑡)/𝑄44(𝑡 + 1), only points between the pion walls are
displayed for clarity. The results are based on conserved currents and only the connected diagrams a,
b and c. There are a number of interesting features in these plots. The results for 𝒒 = 0 confirms the
current conservation property for fount-point functions,∑︁

𝒙2,𝒙1

Ω|𝜓(𝑥) 𝑗 (𝑞2,𝑃𝑆)
4 (𝑥2) 𝑗 (𝑞1,𝑃𝑆)

4 (𝑥1) 𝜓†(0) |Ω = 𝑞1𝑞2 Ω|𝜓(𝑥)𝜓†(0) |Ω . (5)

In physical terms, the charge overlap at 𝒒 = 0 on the left-hand-side is effectively reconstructing the
two-point function. Each charge density is spread over all spatial sites on the lattice. By summing
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Pion polarizability from four-point functions...

over 𝒙1 and 𝒙2 at zero momentum, we recover the total charge factor from each insertion, regardless
of the time points of the insertions. Basically, for conserved current, we expect the ratio of four-point
function to two-point function to approach the charge factor 𝑞𝑢𝑞𝑑 + 𝑞𝑑𝑞�̄� = 4/9 for diagram a in
the isospin limit, independent of current insertion points 𝑡1 and 𝑡2. For diagrams b and c, the factor
is 𝑞𝑢𝑞𝑢 + 𝑞𝑑𝑞𝑑 = 5/9. Indeed, this is confirmed in all three diagrams (black dots). In diagram
a, current conservation is limited between 𝑡2 = 7 (on the pion wall source) and 𝑡2 = 41 (one step
inside the pion wall sink) because the two currents independently couple to two different quarks
in this range. In diagram b, where they couple to the same quark, current conservation emerges
only starting from 𝑡2 = 19. In diagram c, it is limited between 𝑡2 = 7 and 𝑡2 = 17 because it is the
Z-graph of b (different time-ordering). If diagrams b and c are added, then current conservation
extends to the whole range, just like diagram a, except for the special point of 𝑡1 = 𝑡2 to be discussed
below. Outside the regions of current conservation, the 𝒒 = 0 signal is exactly zero, while the 𝒒 ≠ 0
signal gradually goes to zero towards the Dirichlet wall. There is a subtle issue with four-point
functions. If the two currents couple to different quark lines (𝑞1 ≠ 𝑞2), the conservation is for all
combinations of 𝑡1 and 𝑡2 between source and sink, including 𝑡1 = 𝑡2. If they couple to the same
quark line (𝑞1 = 𝑞2), the conservation is only true for 𝑡1 ≠ 𝑡2. The point 𝑡1 = 𝑡2 introduces unwanted
contact terms on the lattice. The issue is a lattice artifact; in the continuum, the contact interaction is
regular and well-defined. Indeed we see that the special point of 𝑡1 = 𝑡2 is regular in diagram a, but
gives irregular results in diagram b and c for all values of 𝒒. We avoid this point in our analysis.
Finally, the effective mass function of 𝑄44 for diagram b approaches the value of 𝐸𝜋 − 𝑚𝜋 at large
separation times between 𝑡1 and 𝑡2. This is an indication that the four-point function for diagram b is
dominated by the elastic contribution with a fall-off rate of 𝐸𝜋 − 𝑚𝜋 according to Eq.(4). The same
is true for diagram a, although deviations are slightly larger at higher momentum. The situation for
diagram c, however, is completely different. The fall-off rates approach high above their respective
𝐸𝜋 − 𝑚𝜋 values, suggesting they are dominated by inelastic contributions. In other words, the
intermediate state is not a pion, but some four-quark state at higher mass and energy.

3.2 Elastic form factor

To account for possible violation of the continuum dispersion relation, we perform a fit to the
functional form of 𝑄𝑒𝑙𝑎𝑠

44 in Eq.(4), treating both {𝐹𝜋 , 𝐸𝜋} as free parameters with 𝑚𝜋 fixed at the
measured values from two-point functions. After the form factor data are obtained, we fit them to
the monopole form,

𝐹𝜋 (𝒒2) = 1
1 + 𝒒2/𝑚2

𝑉

, (6)

which is the well-known vector meson dominance (VMD) commonly considered in pion form factor
studies. The results are illustrated in Fig. 3. We see that the monopole form does not fit the data very
well, especially at higher momentum and lower pion mass. For this reason, we also considered the
𝑧-expansion parametrization [15]

𝐹𝜋 (𝒒2) = 1 +
𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝑎𝑘 𝑧
𝑘 , where 𝑧 ≡

√
𝑡𝑐𝑢𝑡 − 𝑡 − √

𝑡𝑐𝑢𝑡 − 𝑡0√
𝑡𝑐𝑢𝑡 − 𝑡 + √

𝑡𝑐𝑢𝑡 − 𝑡0
and 𝑡 = −𝒒2, 𝑡𝑐𝑢𝑡 = 4𝑚2

𝜋 , (7)

where 𝑎𝑘 are free parameters and 𝑡𝑐𝑢𝑡 is the two-pion production threshold. We take 𝑡0 = 0 so the
form goes through 𝐹𝜋 (0) = 1 by construction. Using this form, we can find a good fit with 𝑘𝑚𝑎𝑥 = 3
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Figure 3: Pion elastic form factors extracted from four-point functions. The red data points are the measured
values. The green solid line is a fit to the z-expansion in Eq. (7). The green dashed line is a fit to the monopole
form in Eq. (6). The blue dashed line is the same monopole form plotted with the measured rho mass, and the
black solid line with the physical rho mass.

in all cases. For comparison, we also plot the monopole function with the measured rho mass 𝑚𝜌 and
the physical rho mass of 𝑚𝑝ℎ𝑦𝑠

𝜌 = 0.77 GeV. We observe significant differences between the fitted
monopole form (𝑚𝑉 ) and the VMD form (𝑚𝜌). The difference grows with increasing momentum
and decreasing pion mass. Similar behavior has been observed in previous studies [16, 17]. Once
the functional form of form factor is determined, the charge radius is obtained by

𝑟2
𝐸 = −6

𝑑𝐹𝜋 (𝒒2)
𝑑𝒒2

���
𝒒2→0

. (8)

Their values in physical units are put in Table 1.

Table 1: Summary of results in physical units from two-point and four-point functions. Two sets of results are
given for charge radius: one from z-expansion fits to the form factor, one from monopole fits. The average of
the two is used to determine elastic 𝛼𝐸 . The total 𝛼𝐸 is smoothly extrapolated to the physical point. This
extrapolated value, in conjunction with the elastic 𝛼𝐸 derived from charge radius and pion mass given by
PDG, yields the prediction for the inelastic 𝛼𝐸 at the physical point. All 𝛼𝐸 values are in units of 10−4 fm3.

𝜅=0.1520 𝜅=0.1543 𝜅=0.1555 𝜅=0.1565 physical point
𝑚𝜋 (MeV) 1104.7 ± 1.2 795.0 ± 1.1 596.8 ± 1.4 367.7 ± 2.2 138.000
𝑚𝜌 (MeV) 1273.1 ± 2.5 1047.3 ± 3.4 930. ± 7. 830. ± 17. 770.000
𝑟2
𝐸

(fm2 0.1329 ± 0.0018 0.187 ± 0.004 0.2266 ± 0.0025 0.252 ± 0.008 0.434 ± 0.004
𝛼𝐸 elastic 0.577 ± 0.008 1.129 ± 0.023 1.820 ± 0.021 3.29 ± 0.11 15.08 ± 0.13
𝛼𝐸 inelastic −0.304 ± 0.006 −0.605 ± 0.007 −0.846 ± 0.005 −1.148 ± 0.010 −11.84 ± 0.29
𝛼𝐸 total 0.273 ± 0.010 0.523 ± 0.023 0.975 ± 0.021 2.14 ± 0.11 3.24 ± 0.31
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Pion polarizability from four-point functions...

3.3 Electric polarizability

In Fig. 4 we show separately the total contribution 𝑄44 (from all three diagrams) and 𝑄𝑒𝑙𝑎𝑠
44 as

a function of current separation 𝑡 = 𝑡2 − 𝑡1. W use 𝑚𝜋 = 600 MeV as an example; the graphs at
the other pion masses look similar. Note that although 𝑄𝑒𝑙𝑎𝑠

44 is obtained in the large time region,
the subtraction is done in the whole region according to the functional form in Eq.(4). Most of the
contribution is in the small time region where inelastic contributions are significant. We observe that
𝑄𝑒𝑙𝑎𝑠

44 is consistently larger than 𝑄44, suggesting that the inelastic term in the formula is negative.
The time integral is simply the negative of the shaded area between the two curves. One detail
to notice is that the curves include the 𝑡 = 0 point which has unphysical contributions in 𝑄44 as
mentioned earlier. We would normally avoid this point and only start the integral from 𝑡 = 1.
However, as one can see, the chunk of area between 𝑡 = 0 and 𝑡 = 1 is the largest piece in the integral.
To include this contribution, we linearly extrapolated the 𝑄44 term back to 𝑡 = 0 using the two points
at 𝑡 = 1 and 𝑡 = 2. This will incur a systematic effect on the order of 𝑂 (𝑎2) since the error itself is
order of 𝑂 (𝑎). As the continuum limit is approached, the systematic effect will vanish (the chunk
will shrink to zero). There is no issue to include this point in 𝑄𝑒𝑙𝑎𝑠

44 using its functional form. The
entire second term (prefactor and time integral) is a function of momentum. Since 𝛼𝐸 is a static
property, we extrapolate it to 𝒒2 = 0 smoothly. To assess the systematic effect of this extrapolation,
we consider two fitting forms, one is 𝑎 + 𝑏𝑥 + 𝑐𝑥2 (𝑥 = 𝒒2) using all data points, the other a simple
linear extrapolation using the two lowest points. The results are shown in Fig. 4 for all pion masses.
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Figure 4: Left: Total 𝑄44 and elastic 𝑄𝑒𝑙𝑎𝑠
44 at different values of 𝒒 at 𝑚𝜋 = 600 MeV. The shaded area,∫

𝑑𝑡
[
𝑄44 (𝒒, 𝑡) −𝑄𝑒𝑙𝑎𝑠

44 (𝒒, 𝑡)
]
, is the signal contributing to polarizability. Right: Extrapolation of the second

term (inelastic) in Eq. (1) to 𝒒2 = 0 in physical units. The red points are based on the shaded areas in Fig. 4.
The blue curve is a quadratic extrapolation using all points. The green curve is a linear extrapolation based
on the two smallest 𝒒2 values with straight lines connecting all the points. The black points indicate the
extrapolated values contributing to 𝛼𝐸 .
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One observes a difference between the two that decreases with decreasing pion mass. The difference
in the extrapolation is a systematic effect in the analysis. We will use the average of the two values to
determine 𝛼𝐸 .

We summarize all of the results measured in this study in Table 1. We use the average of
monopole and z-expansion to determine the elastic 𝛼𝐸 . To see how the trend continues in pion mass,
we include the physical point in the following way. We take the total values for 𝛼𝐸 and perform a
smooth extrapolation to the physical point using the 𝑎 + 𝑏𝑚𝜋 + 𝑐𝑚2

𝜋 form. The extrapolated value
𝛼𝐸 = 3.24 ± 0.31 can be compared to known values for charged pion 𝛼𝐸 . PDG [18] quotes a value
𝛼𝐸 = 2.0 ± 0.6 ± 0.7 from experiment with large uncertainties. ChPT [19] gives 𝛼𝐸 = 2.8. Our
values are comparable. We also attempted to extrapolate the total 𝛼𝐸 using the 1/𝑚𝜋 form expected
from ChPT. This form does not fit our data well which is not surprising since some of our pion
masses lie beyond the region of validity for ChPT. Chiral extrapolation is an open issue that warrants
further study when the calculation is extended to smaller pion masses.

To get a sense of individual contributions at the physical point, we take the PDG value
𝑟2
𝐸

= 0.435(4) fm2 and physical 𝑚𝜋 to arrive at the elastic 𝛼𝐸 value of 15.08(13). Then the
inelastic value of 𝛼𝐸 = −11.84(29) can be inferred from the total and the elastic. We should mention
that our value is consistent with the inelastic contribution obtained in another lattice study [3] near
physical pion mass. It employs a formula derived from a different method but has a similar structure.

In any event, a physical picture starts to emerge from our results. In the approach to the
physical point, the elastic contribution grows positive strongly; at the same time the inelastic
contribution grows negative strongly; the total is relatively small and positive and has a mild pion
mass dependence.

4. Conclusions and acknowledgements

We investigated the feasibility of using four-point functions in lattice QCD to extract charged
pion electric polarizability. The approach is based on low-energy Compton scattering tensor
constructed with quark and gluon fields in Euclidean spacetime [5]. The central object is the formula
given in Eq.(1) which consists of two terms. One is an elastic contribution involving charge radius
𝑟2
𝐸

and pion mass. The other an inelastic contribution in the form of a subtracted time integral. In
addition to four-point functions, it requires two-point functions for pion mass and normalization,
but not three-point functions. The elastic contribution can be obtained from the same four-point
function in the elastic limit. The simulation demonstrates that the four-point function methodology
can be a viable alternative to the background method for polarizabilities of charged hadrons. We
caution that the picture is subject to a number of systematic effects at this stage, such as the quenched
approximation, finite-volume effects, and disconnected loops. Aside from these effects, the largest
source of uncertainty in the present analysis is in charge radius determination. We observe significant
differences between monopole and z-expansion. Our final results are based on the average of the
two. Although the uncertainty does not alter the picture qualitatively, it matters for quantitative
comparisons.

The analysis procedure used to determine 𝛼𝐸 in Eq.(1) involves multiple steps which we
summarize here. 1) Fit Type 1 two-point function to obtain 𝑚𝜋 (and 𝑚𝜌). 2) Fit four-point function
𝑄

(𝑎𝑏)
44 from diagrams a and b to 𝑄𝑒𝑙𝑎𝑠

44 at large times for elastic form factor 𝐹𝜋 . 3) Fit 𝐹𝜋 data to a
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functional form (monopole or z-expansion), then extract charge radius 𝑟2
𝐸

. 4) Perform subtraction
𝑄

(𝑎𝑏𝑐)
44 (𝒒) − 𝑄𝑒𝑙𝑎𝑠

44 (𝒒) at small times using all three diagrams a,b,c. Do the time integration.
Extrapolate back to 𝑡 = 0 to include the missing chunk due to contact terms. 5) Extrapolate the
inelastic term to 𝒒2 = 0 to obtain the static limit, then assemble everything in physical units for 𝛼𝐸 .
6) Extrapolate the total 𝛼𝐸 in pion mass to the physical point.

Going forward, the investigation can proceed in multiple directions. First, the quenched
approximation should be removed by employing dynamical fermions. Work is underway to use
our collection of two-flavor nHYP-clover ensembles [20] which have been successfully used in a
number of physics projects. They have smaller pion masses (about 315 MeV and 227 MeV) that
can be used to check the expected chiral behavior and facilitate a chiral extrapolation study. The
elongated geometries in these ensembles offer a cost-effective way of studying finite-volume effects
and reaching smaller 𝒒 values. It would be interesting to see how the charge radius is affected
by the change of action. Second, a simulation of charged pion magnetic polarizability (𝛽𝑀) is
straightforward. The formula has been derived in Ref. [5]. One just needs to replace 𝑄44 with 𝑄11 in
the formalism. It would be interesting to check the well-known prediction 𝛼𝐸 + 𝛽𝑀 ≈ 0 from ChPT.
Third, the disconnected contributions should be included. This is a challenging task. Although
disconnected loops generally give smaller contributions than connected ones, they must be dealt
with for a complete picture from lattice QCD. Fourth, the methodology can be equally applied to
neutral particles (for example 𝜋0 and the neutron). The advantage it offers over the background field
method is the natural treatment of disconnected loops (or sea quarks) [21, 22]. Our ultimate target
is the proton for which a formula is also available [5]. A first-principles-based calculation of its
polarizabilities will be a valuable addition to the Compton scattering effort in nuclear physics.

This work was supported in part by U.S. Department of Energy under Grant No. DE-FG02-
95ER40907 (FL, AA) and UK Research and Innovation grant MR/S015418/1 (CC). The calculations
are carried out at DOE-sponsored NERSC. AA would like to acknowledge support from University
of Maryland. WW would like to acknowledge support from the Baylor College of Arts and Sciences
SRA program.
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