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1. Introduction

The structure of hadrons is studied through objects such as form factors and parton distribution
functions (PDFs) [1]. PDFs are useful for studying one dimensional structure of hadrons, since
it only depends on the fraction of longitudinal momentum of the parent hadron that is carried by
the constituent partons. For a three dimensional understanding of hadron structure, one needs
generalized parton distributions (GPDs) [2–4] and transverse momentum dependent PDFs (TMD-
PDFs) [1, 5–7]. In the present work, we focus on the latter.

Experimentally, TMDPDFs can be extracted from high energy scattering processes such as Drell-
Yan production and semi-inclusive deep-inelastic scattering. Historically, theoretical calculation of
TMDPDFs (and PDFs in general) from first principles using lattice QCD has been challenging due
to difficulties in computing the associated light-cone correlators on the lattice. Over the last several
years, the development of large momentum effective theory (LaMET) [8–11] has made it possible to
calculate such objects in lattice QCD. Under the framework of LaMET, the TMDPDF is defined in
terms of a quasi-beam function and a soft function [10, 12]. Recently, the soft function [13, 14] and
the quasi-beam [15, 16] function have been calculated, the latter with pion external states, within
lattice QCD. While preparing this proceedings contribution, a work on quasi-TMDPDF with the
nucleon was also put forward [17]. In this work we present an exploratory study of the quasi-beam
function with nucleon external states, with an aim to combine this result with our previous soft
function calculation [14] and obtain the full TMDPDF. We also study a possible non-perturbative
renormalization through regularization-independent momentum subtraction (RI/MOM) scheme.

In the following section, we define the quasi-beam function in relation to the TMDPDF. In section
3, we explain the non-perturbative renormalization procedure using RI/MOM. Section 4 describes
the lattice setup used in the simulation and section 5 summarizes the results.

2. The quasi-beam function

The scheme-independent TMDPDF 𝑓 𝑇𝑀𝐷 (𝑥, 𝑏, 𝜇, 𝜁) is defined as [10]

𝑓 𝑇𝑀𝐷 (𝑥, 𝑏, 𝜇, 𝜁) = 𝐻
(
𝜁𝑧

𝜇2

)
𝑒
− ln

(
𝜁𝑧
𝜁

)
𝐾 (𝑏,𝜇)

𝑓 (𝑥, 𝑏, 𝜇, 𝑃𝑧), 𝑆
1
2
𝑟 (𝑏, 𝜇) + . . . (1)

where 𝑓 (𝑥, 𝑏, 𝜇, 𝑃𝑧) is the so-called quasi-TMDPDF, 𝑆
1
2
𝑟 (𝑏, 𝜇) is the reduced soft function. 𝑥 is the

longitudinal momentum fraction, 𝑏 the transverse separation, 𝜇 defines the renormalization scale
and 𝜁𝑧 = (2𝑥𝑃𝑧)2 is the Collins-Soper scale of the quasi-TMDPDF with 𝜁 being the scale for the
light-cone correlation. The factor 𝐻

(
𝜁𝑧

𝜇2

)
is the perturbative matching kernel and 𝐾 (𝑏, 𝜇) is the

Collins-Soper kernel. Under LaMET, the soft factor can be obtained through a ratio of a meson
form factor and the TMD wave function [18]. The quasi-TMDPDF, on the other hand, is defined as

𝑓 (𝑥, 𝑏, 𝜇, 𝑃𝑧) = lim
𝐿→∞

∫
𝑑𝑧

2𝜋
𝑒−𝑖𝑧 (𝑥𝑃

𝑧 )𝑍𝑀𝑆 (𝜇, 𝑧) 𝑃
𝑧

𝐸𝑃
𝐵Γ (𝑧, 𝑏, 𝐿, 𝑃𝑧). (2)
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Here. 𝐵(𝑧, 𝑏, 𝐿, 𝑃𝑧) is known as the quasi-beam function and it is described by the bare matrix
element

𝐵Γ (𝑧, 𝑏, 𝐿, 𝑃𝑧) = ⟨𝑁 (𝑃𝑧) |OΓ (𝑧, 𝑏, 𝐿) |𝑁 (𝑃𝑧)⟩
= ⟨𝑁 (𝑃𝑧) |�̄�(𝑥 + 𝑏 + 𝑧)ΓW(𝑥 + 𝑏 + 𝑧; 𝐿)𝜓(𝑥) |𝑁 (𝑃𝑧)⟩,

(3)

where 𝑁 (𝑃𝑧) is a nucleon state with momentum boost of (0, 0, 𝑃𝑧) and 𝜓(𝑥) is the standard light
quark doublet. For the unpolarized TMDPDF, Γ can be either 𝛾𝑡 or 𝛾𝑧 . In this work, we show
results for Γ = 𝛾𝑧 . W(𝑥 + 𝑏 + 𝑧; 𝐿) is an asymmetric staple-shaped Wilson line with 𝐿 being the
length of the symmetric part:

W(𝑥 + 𝑏 + 𝑧; 𝐿) = W𝑧 (𝑥; 𝑥 + 𝐿)W⊥(𝑥 + 𝐿; 𝑥 + 𝐿 + 𝑏)W𝑧 (𝑥 + 𝐿 + 𝑏; 𝑥 + 𝑏 + 𝑧). (4)

Here W𝑧 defines a Wilson line along the boost direction and W⊥ defines one along the transverse
direction. The shape of the asymmetric staple is shown in Figure 1.

®𝑥
®𝑥 + 𝐿𝑧

®𝑥 + 𝐿𝑧 + 𝑏�̂�
®𝑥 + 𝑏�̂� + 𝑧𝑧

Figure 1: The shape of the asymmetric staple defined in the operator of the quasi-beam function

The bare matrix element defined in Eq. (3) is shown to have an intrinsic 𝑒−𝐿 divergence arising
from Wilson link self energy [10, 16], and, hence, in the literature one often defines a "subtracted"
quasi-beam function as

�̃�Γ (𝑧, 𝑏, 𝑃𝑧) = 𝐵Γ (𝑧, 𝑏, 𝐿, 𝑃𝑧)√︁
𝑍𝐸 (𝑏, 2𝐿 + 𝑧)

. (5)

Here 𝑍𝐸 (𝑏, 2𝐿 + 𝑧) is the vacuum expectation value of a rectangular Wilson loop having side
length of 2𝐿 + 𝑧 along the boost direction and 𝑏 along the transverse direction. This subtraction
takes care of the L-divergence in the matrix element. However, if one performs a non-perturbative
renormalization by building an amputated Green’s function with the operator under consideration,
a similar divergence is expected and must be subtracted from there as well. Therefore, effectively,
this subtraction cancels out between the bare matrix element and the renormalization factor. Since
we will be using RI/MOM, we do not utilize Eq. (5).

3. Non-perturbative renormalization using RI/MOM

The bare matrix element defined in Eq. (3) must be renormalized, as it contains both logarithmic
divergences arising from the endpoints of the Wilson line, as well as from the cusps associated
with the quark wave function, and a linear divergence associated with the length of the Wilson
line. Additionally, according to symmetry arguments, staple-shaped operators of different Dirac
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structures can and will mix; thus, an appropriate renormalization which disentangles the mixing
is also needed. One commonly used method is the non-perturbative renormalization using the
RI/MOM scheme [19], with a subsequent perturbative matching to the MS scheme. In this work,
we show results for the non-perturbative part of the renormalization.

The RI/MOM renormalized quasi-beam function for each operator Γ is obtained through the
following relation:

𝐵Γ
𝑅𝐼/𝑀𝑂𝑀 (𝑧, 𝑏, 𝑃𝑧; 𝜇) = 𝑍𝑅𝐼/𝑀𝑂𝑀

ΓΓ′ (𝑧, 𝑏, 𝐿; 𝜇)𝐵Γ′ (𝑧, 𝑏, 𝐿, 𝑃𝑧). (6)

Since operator mixing is present, the renormalization functions take a matrix form 𝑍ΓΓ′ . In order to
determine all renormalization matrix elements, we impose the following condition using a number
of different projectors Γ′:

𝑍
𝑅𝐼/𝑀𝑂𝑀
ΓΓ′ (𝜇) =

[
Tr[ΛΓ (𝑝)Γ′†]

12𝑒𝑖 (𝑝𝑧 ·𝑧+𝑝⊥ ·𝑏)𝑍𝑞 (𝑝)

]−1
�����
𝑝2=𝜇2

, (7)

where ΛΓ (𝑝) is the amputated vertex function of the staple-shaped operator OΓ (see Eq. (3)),

ΛΓ (𝑝) = 𝑆−1(𝑝)𝐺Γ (𝑝)𝑆−1(𝑝). (8)

𝑆(𝑝) is the quark propagator and 𝐺Γ (𝑝) denotes the Green’s function,

𝐺Γ (𝑝) = ⟨𝑞(𝑝) |OΓ (𝑧, 𝑏, 𝐿) |𝑞(𝑝)⟩. (9)

Here 𝑞(𝑝) is an off-shell quark state defined in the Landau gauge and 𝜇 =
√︁
𝑝2 defines the

renormalization scale.
The quark wave function renormalization 𝑍𝑞 (𝑝), in the denominator of Eq. (7), is defined as

𝑍𝑞 (𝑝) =
1
12

Tr[𝑆−1(𝑝)𝑆tree(𝑝)]

=
Tr[−𝑖∑𝜇 𝑆

−1(𝑝)𝛾𝜇 sin(𝑝𝜇)]
12

∑
𝜇 sin (𝑝𝜇)2 .

(10)

In some recent works [16, 20], following this scheme, different mixing patterns are considered
including possible mixing among all different Dirac structures Γ. In our study, we follow a different
approach by considering the minimal set of staple-shaped operators that are allowed to mix by C,
P, T symmetries. A similar approach was taken for the quasi-PDF case and it was found that 𝛾𝑡 has
no possible mixing [21, 22]. In the present case, mixing is unavoidable. It can be shown, however,
through symmetry arguments, that for Γ = 𝛾𝑧 the only operators that mix are {1, 𝛾𝑦 , 𝛾𝑦𝛾𝑧} [23].
This assumes that the transverse direction in the construction of the staple is along the y-direction.

4. The lattice setup

For the lattice simulation, we use an 𝑁 𝑓 = 2+1+1 clover improved twisted mass fermion ensemble
of size 243 × 48, produced by the Extended Twisted Mass Collaboration (ETMC) [24]. This is the

4
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same ensemble that was used in our previous study of the soft function [14], since we would like to
combine our results with those of the reduced soft function. This exploratory study is done using
100 configurations with 8 source positions for each configuration. To increase statistics, the boost
is taken in all possible directions, both positive and negative. For each such direction of boost, the
staple is constructed in both the remaining transverse directions. This gives us 12 measurements
(6 boost directions × 2 transverse directions) for each source position. The details of the lattice
simulation are summarized in Table 1.

𝐿3 × 𝑇 𝑎[ 𝑓 𝑚] 𝑎𝜇𝑠𝑒𝑎 𝑚𝜋𝑠𝑒𝑎 [𝑀𝑒𝑉] 𝑁𝑐𝑜𝑛 𝑓 𝑁𝑠𝑟𝑐 𝑁𝑚𝑒𝑎𝑠

243 × 48 0.093 0.00530 350 100 8 9600

Table 1: Details of the lattice ensemble used in the calculation

The bare matrix element for the quasi-beam function is calculated through a ratio of a 3-point and
a 2-point function,

𝐵Γ (𝑧, 𝑏, 𝐿, 𝑃𝑧) =
⟨𝐶3𝑝𝑡

Γ
(𝑧, 𝑏, 𝐿, 𝑃𝑧; 𝑡𝑠, 𝜏)⟩
⟨𝐶2𝑝𝑡 (𝑃𝑧; 𝑡𝑠)⟩

=

∑
x 𝑒

−𝑖P·x⟨0|𝑁 (x, 𝑡𝑠)OΓ (𝑧, 𝑏, 𝐿; 𝜏)�̄� (0, 0) |0⟩∑
x 𝑒

−𝑖P·x⟨0|𝑁 (x, 𝑡𝑠)�̄� (0, 0) |0⟩
.

(11)

Here, 𝜏 is the insertion time of the operator OΓ and 𝑡𝑠 defines the source-sink time separation. In
this work, we show results for a single source-sink separation of 𝑡𝑠 = 10𝑎.
The 3-point function is constructed for the isovector combination 𝑢 − 𝑑, by inserting a 𝜏3 in flavor
space. This choice ensures the elimination of the disconnected contributions and only connected
diagrams need to be calculated.
The propagators are calculated from APE-smeared links. Momentum smearing [25] is also applied
in order to improve the signal at large boost. It is also observed that applying stout smearing to
the gauge links used in construction of the staple also reduces the statistical errors. Here, we have
applied 5 steps of stout smearing to the staple shaped Wilson line.

For the renormalization, we have used Landau gauge fixed configurations from the same ensemble.
The 𝑍𝑅𝐼/𝑀𝑂𝑀 factors are calculated using 10 configurations at a scale of (4, 4, 4, 4 + 1

2 ) in lattice
units. The staples are similarly stout smeared for the vertex functions as well.

5. Results

In this section, we present the results for the quasi-beam functions at a boost of 6𝜋
𝐿

, which is
about 1.7 GeV for the given lattice. In Figure 2, we present the bare and RI/MOM renormalized
quasi-beam functions at different values of 𝐿 and 𝑧 for 𝑏 = 0.09 fm and 𝑏 = 0.18 fm. The values
for 𝑧 and −𝑧 are symmetrized using the relation 𝐵(−𝑧) = 𝐵†(𝑧).
One can easily observe the 𝐿-associated divergence in the bare matrix element, even though such
behavior is strongly suppressed by the application of stout smearing. For the non-perturbatively

5
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Figure 2: Real and imaginary parts of the bare and RI/MOM renormalized quasi-beam functions for different
values of 𝐿 and 𝑧. The plots in the first row correspond to 𝑏 = 0.09 fm and in the second row to 𝑏 = 0.18 fm.
Note that points for different 𝐿 are horizontally shifted for better visibility.

renormalized matrix elements, no residual 𝐿 dependence is observed, as expected. It is also ob-
served that the errors get significantly large with increasing 𝑏 and 𝑧. So more statistics is definitely
required in order to probe larger transverse separations.

In Figure 3, we plot the RI/MOM factors for the diagonal element of 𝛾𝑧 for different values of 𝑏.
The renormalization factors increase rapidly for larger 𝑧 and 𝑏. This explains the strong scaling of
errors in the renormalized matrix element, particularly for larger values of 𝑧.
The divergence of RI/MOM factors with increasing 𝑏 and 𝑧 is problematic, since the signal from
the bare matrix element decreases for such cases. For 𝑏/𝑎 > 2, renormalization through RI/MOM
might not be feasible. Other methods of non-perturbative renormalization are currently being
studied.

6. Conclusion

This work represents an exploratory study of the quasi-beam functions necessary for the construction
of the TMDPDF. We showed results for the bare and non-perturbatively renormalized quasi-beam

6
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Figure 3: RI/MOM renormalization factors for 𝛾𝑧

functions for transverse separation up to 0.18 fm at a boost of 1.7 GeV. The results are promising,
however the renormalization procedure through RI/MOM might not be effective for large transverse
separations. We are currently studying other techniques such as the ratio scheme [26] and auxiliary
field [27] approach. Work is also underway for the calculation of the perturbative conversion
factors. The next step is to combine this result with the soft function calculations and obtain the
quasi-TMDPDF on the lattice and perform the matching to light-cone TMDPDF.
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