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1. Introduction

The equation of state constitutes the most relevant input for the phenomenological description
of physical systems in cosmology and astrophysics and is essential for the hydrodynamical modeling
of heavy-ion collisions. Most of these systems are dominated by non-vanishing baryon density,
but charge and strangeness densities can also contribute significantly to the thermodynamics of the
system. For some systems it is indeed the charge density which plays the major role, such as in the
case of an early Universe featuring sizeable lepton flavour asymmetries [1–3]. In all of these cases,
however, the EoS has to be known in the full three-dimensional parameter space to allow for a full
description of these pysical systems. The computation of the EoS in most of the parameter space is
hampered by the infamous sign problem at nonzero density.

In lattice QCD, we are typically working in the grand canonical ensemble, where the densities
are traded for the respective chemical potentials. Since in QCD the individual quark densities are
conserved, we are free to choose a suitable chemical potential basis. In the # 5 = 2 + 1 setup,
which is sufficient to capture the main dynamics for temperatures around the thermal transition
temperature, a convenient basis is given by

`D = `! + `� , `3 = `! − `� and `B . (1)

This basis is ideally suited to distinguish between cases suffering from the complex action problem
and those which do not. As long as `! = `B = 0, the case known as pure isospin chemical potential,
the action is real and the theory is amenable to Monte-Carlo simulations [4–6]. A few years ago we
started the first dedicated program to extract the properties of QCD at non-zero isospin chemical
potential at the physical point with controlled systematics. This includes a detailed study of the
phase diagram [7, 8], for which the presence of a superconducting BCS phase at large `� is still
an open question [9, 10], as well as the extraction of the EoS. First accounts of the results for the
latter have already been presented for zero [11] and nonzero [3, 12–14] temperatures. Here we will
discuss the status of the extraction of the EoS.

A related observable, which has become very prominent in themodelling of the EoS for neutron
stars in the past decade, e.g. [15–17], is the speed of sound 2B. In this proceedings article, we will
discuss the extraction of the speed of sound from the EoS at zero and non-zero temperature and show
the first results for the speed of sound obtained in the pion condensed phase from first principles in
full QCD at the physical point. In particular, we will see that for high isospin chemical potentials 2B
exceeds the conformal bound [18] of 2B = 1/

√
3. This is the first time that such a behavior has been

observed in full QCD within lattice simulations. In light of this, it appears instructive to reconsider
what counts as a natural parameter region for 2B.

Eventually, we are interested in the full three-dimensional parameter space. Our simulation
points at nonzero isospin chemical potential provide a novel starting point to extract the EoS in this
parameter space at small `! and `B, but large `� using indirect methods, giving access to previously
inaccessible regions in parameter space. We will discuss the first steps towards the extension of our
EoS to `! ≠ 0 using the Taylor expansion method [19].

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
4
4

EoS and Taylor expansions at nonzero isospin chemical potential Bastian B. Brandt

mπ/2

vacuum
pion condensed

phase

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

µI/mπ

n
I
/
m

3 π

mπ/2

vacuum
pion condensed

phase

0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.4

−0.2

0

0.2

0.4

0.6

µI/mπ

I
/m

4 π

Figure 1: Left: Simulation results for the isospin density =� vs. the isospin chemical potential `� at
vanishing temperature together with the interpolation explained in the text. The red points and curve belong
to the ensembles with 0 ≈ 0.15 fm and the blue to the ensembles with 0 ≈ 0.22 fm. The light gray results
and curves belong to the old data at 0 ≈ 0.29 fm and a slightly smaller temperature published in Ref. [11].
Right: Results for the interaction measure obtained from the interpolation of the isospin density shown in
the left panel. The mapping between colours and lattices is the same as in the left panel. The yellow dashed
line is the result from chiral perturbation theory [4].

2. Equation of state at pure isospin chemical potential

In our study, we use # 5 = 2 + 1 flavours of improved rooted staggered quarks with two levels
of stout smearing and tuned to physical quark masses, as well as the tree-level Symanzik improved
gluon action. To enable simulations in the phase where charged pions condense, the BEC phase,
the simulations entail a regulator, the pionic source, controlled by a parameter _. In particular, we
simulate at _ ≠ 0 and results are extrapolated to _ = 0 using the improvement program described
in Ref. [7]. The relevant observable for the extraction of the EoS is the isospin density

〈=� 〉 =
)

+

m logZ
m`�

. (2)

For the definition and the improvement of the _-extrapolations we refer to Ref. [11]. In this and the
following section we will only discuss results which have already been extrapolated to _ = 0.

2.1 The EoS at vanishing temperature

The extraction of the EoS at (approximately) vanishing temperature has been discussed in
Ref. [11]. The full EoS can be obtained from the isospin density, which, upon integration over `� ,
gives the pressure and the interaction measure,

?(0, `� ) =
∫ `�

0
3`′� =� (0, `′� ) and � (0, `� ) = −4? + =� (0, `� )`� . (3)

Themain problemwhen extracting the EoS are residual temperature artifacts, due to themissing
) → 0 extrapolations. In practice, we simulate at ) ≈ 30 MeV and correct for the residual effects.
Those are mostly prominent in the vicinity of the transition to the BEC phase, see Fig. 1, where
they lead to non-vanishing values of the isospin density outside of the BEC phase. We correct
these artifacts by applying chiral perturbation theory at non-zero isospin chemical potential [4]
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Figure 2: Results for the pressure (top-left), the interaction measure (top-right), the energy density (bottom-
left) and and the entropy density (bottom-right). The results have been obtained on our lattice with #C = 8
and for better visibility we do not show the uncertainties.

in the vicinity of the transition (see [11]), fitting the first two datapoints in the BEC phase and
matching to cubic spline interpolations of the remaining datapoints. The spline interpolations are
obtained asmodel-independently as possible by averaging over spline fits with all possible nodepoint
combinations, making use of Monte-Carlo methods [20].

Our study of the EoS at ) = 0 has been started on a comparably coarse lattice, with 0 ≈ 0.29
fm [11]. Here we augment that study with two new sets of ensembles: a set of 243 × 32 ensembles
at a lattice spacing of about 0 ≈ 0.22 fm and a set of 323×48 ensembles at 0 ≈ 0.15 fm. The results
for the interpolation of the isospin density are shown in the left panel of Fig. 1 and the resulting
interaction measure in the right panel. The interaction measure shows a clear sign for the presence
of the BEC phase. It initially rises until it reaches a maximum around `� /<c ≈ 0.63 to 0.65., from
where it decreases until it becomes negative around `� /<c ≈ 0.9, in good agreement [21] with
chiral perturbation theory [4] (yellow dashed line).

2.2 The EoS at nonzero temperature

At ) ≠ 0, we can restrict ourselves to compute the modifications of the pressure and the
interaction measure due to the non-vanishing isospin chemical potential, decomposing the two
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Figure 3: Results for the squared speed of sound at ) = 0 (top left), with the same color coding as in Fig. 1,
and at ) ≠ 0 for #C = 8 (top right), 10 (bottom left) and 12 (bottom right). For the nonzero temperature
panels, the uncertainties are again excluded for clearer plots.

quantities as

?(), `� ) = ?(), 0) + Δ?(), `� ) and � (), `� ) = � (), 0) + Δ� (), `� ) . (4)

The `� = 0 contributions are available from the literature [22, 23]. ThemodificationsΔ?(), `� ) and
Δ� (), `� ) can be computed, similar to the ) = 0 case, from a, now two-dimensional, interpolation
of the isospin density, again using a model independent spline interpolation (see Refs. [3, 14]).
After computing the pressure and the interaction measure from the interpolation, most of the other
relevant thermodynamic quantities can be computed, such as energy and entropy density, n and B,
for instance,

n = � + 3? and B =
n + ? − `� =�

)
. (5)

In our study we use the lattices of Ref. [7], to which we refer for further details, which have
already been used to map out the phase diagram up to `� /<c . 0.9. In particular, we use the
ensembles with #C = 8, 10 and 12 and an aspect ratio #B/#C ≈ 3. From the isospin density we
compute modifications of pressure and interaction measure and combine this with the `� = 0 data
obtained from the interpolation formula provided in Ref. [22] with slightly modified coefficients,
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obtained from a reanalysis of the data.1 The results for the EoS at ) ≠ 0, in particular, the pressure
(top left), the interactionmeasure (top right), the energy density (bottom left) and the entropy density
(bottom right), on the #C = 8 ensemble are shown in Fig. 2. Once more we can see the evidence
for the presence of the pion condensate in the EoS via the characteristic behavior of the interaction
measure at low temperatures. This behavior disappears for temperatures, where the system remains
outside the BEC phase even for large `� . Similar results for the EoS are also available for #C = 10
and 12, as shown in Ref. [14].

3. The speed of sound

From the above interpolations of the isospin density, one can also extract the isentropic speed
of sound 2B. which at non-zero isospin chemical potential is defined as

22
B =

m?

mn

����
B
=�
=const

=
mb ?

mb n
. (6)

The latter defines the directional derivative in the direction of isentropes, satisfying the condition

mb

(
B

=�

)
= 0 . (7)

For ) = 0 Xb = X`� , while for ) ≠ 0 the directional derivative mixes temperature- and chemical
potential-derivatives. Given the spline interpolations, all quantities can be computed analytically.

The results for 22
B at ) = 0 and ) ≠ 0 are shown in Fig. 3. At ) = 0 (top left panel), the

speed of sound increases strongly with `� , crosses the conformal bound [18] at `� /<c ≈ 0.64
and reaches a peak around 0.76 to 0.80. The value of 22

B at the peak position is about 0.53 to 0.6.
We note, that peak position and the height become larger with decreasing lattice spacing, so that
we expect these results to present lower bounds to the continuum limit. Our findings are in good
agreement with recent results obtained in two-color QCD [24, 25]. For ) ≠ 0, the remnant of this
peak is still visible for #C = 8 and 10, albeit shifted towards larger `� values. The tendency for 22

B

to increase is also still present for #C = 12, but we do not see the crossing of the conformal bound
up to `� /<c = 0.9. This might be a sign that the peak at ) ≠ 0 gets shifted to even larger `� when
approaching the continuum limit. Note, however, that the peak appears at the outer sides of the
spline interpolations, where results are potentially more affected by systematic uncertainties. For
larger temperatures, 2B increases and might even cross the conformal bound at large `� values, but
to see what is happening in this region further simulations are necessary.

4. Towards an extension to nonzero -R via Taylor expansion

We would now like to extend our determination of the EoS to non-zero but small light quark
chemical potentials `! from Eq. (1). The extension can proceed via a Taylor expansion [19] of the
pressure, given by

?(), `� , `!) =
∞∑
<=0

j!<(), `� )
<!

`<! with j!<(), `� ) =
m<?(), `� , `!)

m`<
!

����
`!=0

. (8)

1We thank Kálmán Szabó for providing the coefficients and their correlations.
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The remaining task is to compute the Taylor coefficients for a given point in parameter space (), `� ).
Here we will focus on the leading order of the expansion, < = 2. The results obtained for different
_ of the Taylor coefficient j!2 on the ) = 0 lattices with 0 ≈ 0.15 fm are shown in Fig. 4. These
results for the Taylor coefficients are unimproved with respect to the _-extrapolations and, at first
glance, seem to facilitate a simple extrapolation to _ = 0.

In Ref. [7] we have detailed the improved _ → 0 extrapolation procedure for condensates and
densities. In the valence quark improvement we generically split the operators associated with light
quark fermionic observables by 〈$〉 =

〈
$ − X#

$

〉
+
〈
X#
$

〉
, with lim_→0

〈
X#
$

〉
= 0. The improvement

term X#
$

is defined via an approximation of the trace appearing in $ ∼ Tr($̂ "−1) in terms of
singular values and the corresponding eigenstates of themassiveDirac operator,"†(`� )" (`� )i= =
b2
=i=, so that

X#$ ∼
#−1∑
==0

$=<

( 1
b2
= + _2

− 1
b2
=

)
, (9)

where we have introduced the matrix elements of the operator $ with respect to the eigenstates,
$=< = i

†
=$̂i<. Here this procedure has to be extended to susceptibilities. Those include traces

with two inverses of the Dirac operator, for which the contribution of low modes reads

〈
Tr

(
$̂1"

−1$̂2"
−1)〉 ≈ 〈

#−1∑
=,<=0

$1;=<

b2
< + _2

$2;<=

b2
= + _2

〉
, (10)

where the matrix elements are defined as above. Using this representation, we can define the
improvement term X#j for the valence quark improvement of a generic susceptibility j analogous
to Eq. (9) as

X#j ∼
#−1∑
=,<=0

$1;=<$2;<=

( 1
(b2
= + _2) (b2

< + _2)
− 1
b2
= b

2
<

)
. (11)

In principle, one could truncate the two sums at different numbers of singular values. This,
however, is not beneficial numerically, since the lowest singular value matrix elements are available
immediately for all operators. We note that the leading order reweighting of gauge configurations,
as developed for condensates in Ref. [7], can be included in the same way.
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Figure 4: Results for the leading order Taylor coefficient j!2 in the BEC phase for different values of _
(indicated in lattice units) obtained on our ) ≈ 0 lattices at 0 ≈ 0.15 fm.
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Figure 5: Left: Results for the improvement term of the isospin density versus the number of singular values
included in its computation on the ) = 0 lattice at 0 ≈ 0.15 fm with `� /<c = 0.58. Right: Results for the
improvement term of the leading order Taylor coefficient j!2 versus the number of singular values included
in its computation on one of the 243 × 6 lattices with ) = 124 MeV.

We show the results for the improvement term X#=� for different values of # in the left panel of
Fig. 5. When we apply the same procedure for j!2 , however, the lowest singular values are found
to dominate the improvement term more strongly, since they appear with a higher power in the
denominator of Eq. (11). This has two effects: first, it leads to a larger correction term, which,
however, becomes visible in the unimproved susceptibilities only at smaller values of _. Hence the
small dependence on _ in Fig. 4. Second, it increases fluctuations in the correction terms and leads
to larger uncertainties. This is visible in the right panel of Fig. 5, where we show the improvement
term X#

j!2
versus # for a nonzero temperature ensemble. We note, that the situation becomes worse

at ) ≈ 0, where the dominance of the lowest singular value is observed to be even stronger. This
behavior renders reliable _-extrapolations of the Taylor expansion coefficients more challenging
and requires further optimization.

5. Conclusions

In this proceedings article we have presented the status of our study of the EoS of isospin-
asymmetric QCD at zero and non-zero temperatures. The EoS has been determined from a model
independent spline interpolation of the isospin density and at) = 0 residual temperature effects have
been corrected using chiral perturbation theory [4] in the vicinity of the transition to the BEC phase.
In the BEC phase at small temperatures the interaction measure shows a very distinctive feature: it
initially increases until it reaches a maximum, followed by a reduction and eventually turns negative
deep in the BEC phase. Another, particularly interesting observable related to the EoS is the isen-
tropic speed of sound. At zero temperature, the speed of sound increases in the BEC phase, exceeds
the conformal bound [18] at `� /<c ≈ 0.64 and exhibits a peak around `� /<c ≈ 0.76 to 0.80. The
onset of this peak is still visible for small non-zero temperatures on coarser lattices, but it becomes
shifted towards larger `� values with increasing temperature and in the approach to the continuum
limit. To our knowledge this is the first time that a speed of sound larger than the conformal bound
has been observed in first principles QCD. Finally, we discussed our preliminary results concerning
the impact of small light quark baryon chemical potentials `! (cf. Eq. (1)) using Taylor expan-
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sion around the novel expansion points at non-zero temperature and isospin chemical potentials.
The determination of the corresponding susceptibilities in the zero pion source limit is observed
to be more demanding than for simple quark bilinears like the pion condensate or the isospin density.
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