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diagram based on the computation of Taylor series coefficients at both zero and imaginary values
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approximants. We review the methodological aspects of the computation and, in order to gain
confidence in the approach, we report on the application of the method to the two-dimensional
Ising model (probably the most popular arena for testing tools in the study of phase transitions).
Besides showing the effectiveness of the multi-point Padé approach, we discuss what these results
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1. How it all began: from Taylor expansions on thimbles to imaginary `� LQCD

The QCD phase diagram is still to a large extent elusive: in particular, due to the so-called sign
problem, the lattice (the non-perturbative tool which would be supposed to provide valuable insight)
cannot probe the relevant regions in the ) − `� (Temperature-baryonic chemical potential) plane.
In the last couple of years, the Bielefeld-Parma collaboration put forward a method to compute
finite-density QCD thermodynamic observables in the region to which access would be precluded
by the sign problem; this approach is also able to probe the singualrity structure of the theory in the
complex `� plane [1–4]. The method is based on the computation of Taylor series coefficients at
both zero and imaginary values of the baryonic chemical potential, which enables the computation
of multi-point Padé approximants. This work aims to assess the effectiveness of the method by
making use of it in the context of a very standard playground for the physics of phase transitions (e.g.
the 2d Ising model). At the same time, we present (very) preliminary results on new applications
in the context of finite-density QCD.

Before entering the main subject, it is useful to recall when the idea of applying multi-point
Padé rational approximants first came to our mind; that was in the context of thimble regularisation.
The latter [5, 6] was introduced to solve (or at least tame) the sign problem by re-expressing the
path integral as a sum of integrals computed on manifolds different from the original one. After
complexifying the degrees of freedom, one considers the so-called Lefschetz thimbles, i.e. the
manifolds that are the union of the steepest ascent paths stemming from the various stationary
points of the action. On such manifolds the imaginary part of the action stays constant, so that
the sign problem reduces to the so-called residual phase which is there due to the Jacobian of
the change of variables. There is a thimble attached to each stationary point and in principle all
can give a contribution to the path integral. This is referred to as the thimble decomposition. To
make a long story short, we recall that (a) not all the thimbles give a non-null contribution, (b)
this picture changes in different regions of the parameters space of the theory (i.e. a given thimble
can contribute to the path integral in a region and not in another one) and (c) there are cases in
which a single thimble (usually the so called dominant one, attached to the stationary point with
the lowest action) is enough to compute the answer one is interested in. The latter observation
gave raise to the single thimble dominance hypothesis, which was shown to hold in a few cases,
but failed in others. The first example of a failure was provided by the 1-D Thirring model [7, 8],
where it was clearly shown that a single thimble is not enough to account for the known analytic
result. It is nevertheless important to remark that there are regions in which one single thimble is
enough, and this was the logical starting point for the success of a computation based on multi-point
Padé rational approximants. The success of such approach [9] can be recognised in Fig. 1. On
the left, we display the known analytic result for the chiral condensate j̄j of the 1-D Thirring
model (! = 8, < = 1, V = 1) at various values of the chemical potential by mass ratio `

<
. This

is plotted together with the numerical results which we got: triangles are results computed on one
single thimble at points where we are able to show that this is enough; dots are results taken from
the multi-point Padé method that we will better describe in the next section. Here it is enough to
say that a few Taylor expansion coefficients were computed at the points marked by triangles and
from those the multi-point Padé approximant was computed. The right panel of the figure shows
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how the singularity pattern of the solution was reconstructed: the rational approximant displayed a
singularity which falls on top of the analytic one. Convergence radii of the Taylor expansions we
computed can be spotted, showing that there is an intersection of convergence disks, validating the
procedure of bridging the two regions where we were able to compute single thimble results: all in
all, while the thimble decomposition is discontinuous, the physical observable is not. The figure
refers to a given choice of lattice size, mass and V-value; we were able to show [10] that the method
can successfully account for the extraction of the continuum limit.

μ. We can obtain a dimensionless quantity by taking the
ratio μ

m ¼ μ̂
m̂. Since the analytic result is known, the single

thimble approximation was shown not to account for the
correct result on the entire μ

m axis. In our new approach the
problem is solved and in Fig. 2 we display the essential
features of our results: as an example, we show results for
the chiral condensate hχ̄χi (parameters are L ¼ 8, β ¼ 1,
m ¼ 2). We can argue that all the requirements of the
program that we sketched above can be met. There is a
preliminary point we have to make. For real β a Stokes
phenomenon is potentially present up to a given value of μ

m:
this involves the dominant thimble pσ0 and another critical
point. We denote the latter pσ0̄, following the notation of
[19]. The problem can be easily solved by adding a small
imaginary part to β: in this way a Stokes phenomenon does
not take place, a thimble decomposition is in place and
while pσ0̄ could in principle give a contribution to the
result, this is de facto negligible due to the huge difference
SRðpσ0̄Þ ≫ SRðpσ0Þ. This solves the problem and any
further reference to this point will be omitted in the
following.
(1) A first value of μ

m for which only the dominant
thimble pσ0 accounts for the correct result can be
found in a very fundamental, yet simple way. The
range of values SI can take on the real axis depends
on the values of μ̂ and m̂ and, below a given value of
μ
m, this range is limited. By explicit computation of

the SðσÞI ðμmÞ we can show that no unstable thimble
associated to a critical point pσ other that the
dominant one can intersect the original domain of
integration below a given value μ0

m.
7 Thus for μ

m < μ0
m

we can easily select a first point at which the
dominant thimble provides the only contribution

to the result. We picked μ
m ¼ 0.4 and computed the

Taylor expansion up to the second derivative.
We now need to find a second value of μ

m at which
the dominant thimble accounts for the complete
result and compute the Taylor expansion on it. In
principle we could study the crossing mechanism
between the different curves SðσÞI ðμmÞ (see subsec-
tion II B). In practice there is a much simpler way to
proceed. First of all, we point out that the asymptotic
value of hχ̄χi is known: for large enough values of μ
the chiral condensate is zero. We notice that for μ

m ¼
1.4 the value of hχ̄χi computed on the dominant
thimble is very close to zero. By inspecting the
values of SRðpσÞ for thimbles other than the funda-
mental one, we find that, for μ

m ¼ 1.4, SRðpσÞ ≫
SRðpσ0Þ for all the critical points but three, that we
denote σ1, σ1̄, σ2̄.

8 Two of them (σ1̄ and σ2̄) have
values of the real action which are lower than Smin,
which is the minimum value SR takes on the original
domain of integration: because of this, the unstable
thimbles associated to them can’t intersect the
original domain of integration. As for σ1, in this
simple model it does not take that much to show that
the unstable thimble attached to it does not intersect
the original domain of integration (see the left panel
of Fig. 2). We conclude that the dominant thimble σ0
can account for the complete result at this value of μ

m.
We have thus selected the second point we were
looking for; at this point the series has been
computed up to the fifth derivative. One might
object that we made use of the explicit query for
intersections between the original domain of inte-
gration and a given unstable thimble, which thing is

FIG. 2. (Left panel) The flow lines highlighting the thimbles structure of the 1-dim Thirring model at μ
m ¼ 1.4: stable thimbles are

depicted in blue, unstable thimbles in magenta. The dominant thimble is associated to the critical point sitting at ℜðzÞ ¼ 0. The critical
point σ1 is the closest to the latter to the right (there is a mirror image to the left as well): notice that the unstable thimble associated to it
does not intersect the original domain of integration (which is on the real axis). (Center panel) The chiral condensate as obtained from
the analytic solution (continuous black line) and from our Padé approximant (we plot points instead of a continuum line so that the size
of errors are easier to spot.). The points providing input to the evaluation of Padé are marked as triangles. (Right panel) Singularity of the
solution in the complex plane: red point computed from the analytic solution, green point is the only pole of our Padé approximant. We
plot the radii of convergence which are relevant for the expansions at hand: our analytic continuation indeed stands on firm ground.

7The value of m̂ is held fixed. 8We once again adhere to the notation of [19].
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Figure 1: Left panel: (continuum line) analytic solution for the condensate j̄j of the 1-D Thirring model
(! = 8, < = 1, V = 1) at various values of the chemical potential by mass ratio `

<
; (triangles) numerical

results obtained on one single thimble; (dots) numerical results taken from the rational approximant. Right
panel: we plot in the complex `

<
plane the singularity we got from the rational approximant; it is depicted

on top of the known analytic one.

2. Multi-point Padè method for finite density Lattice QCD

2.1 Basics of the multi-point Padè method

Suppose we know a few Taylor expansion coefficients of a given function 5 (I) at different
points {I: | : = 1 . . . #}. The basic idea of our multi-point Padé approach is to approximate 5 (I)
by a rational function '<= (I), which we call a [</=] Padé approximant

'<= (I) =
%<(I)
&̃= (I)

=
%<(I)

1 +&= (I)
=

<∑
8=0

08 I
8

1 +
=∑
9=1

1 9 I
9

. (1)

'<= (I) (i.e. the 08 , 1 9 coefficients defining it) can be fixed by requiring that it reproduces the values
of 5 and a few of its derivatives at the given points {I: }. Provided that = + < + 1 = #B ( 5 (B−1)

being the highest order derivative we computed at each point), this is possible by requiring that

. . .

%<(I:) − 5 (I:)&= (I:) = 5 (I:)
%′<(I:) − 5 ′(I:)&= (I:) − 5 (I:)& ′= (I:) = 5 ′(I:)

. . .

(2)
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In Eq. (2) we only wrote 2 out of B equations for 1 out of # points. It should be clear what the
overall problem amounts to: we have to solve a linear system, the unknowns being the {08 , 1 9 | 8 =
1 . . . <, 9 = 1 . . . =}. This is not the only possible way to solve for '<= (I), but for the purpose of
understanding our approach it suffices (the interested reader can refer to [4] for other alternatives1).
It should be clear that

• Not only '<= (I) can reproduce our input pieces of information; by a natural analytic continu-
ation it can predict values of 5 in an extended region (to the extent we do not exit the region
in which the approximation holds, which thing of course deserves care of its own): left panel
of Fig. 1 is an example.

• When a zero in the denominator of '<= (I) is not canceled by a corresponding zero of the
numerator, we face a singularity of the rational approximation, which is supposed to teach us
something on the singularity structure of 5 ; quite obviously, singularities live in the complex
I plane: right panel of Fig. 1 is an example.

2.2 First application of the multi-point Padè method to finite density LQCD

In [4] the Bielefeld Parma collaboration applied the multi-point Padè method to finite density
LQCD. In the example of section 1 we did not have a way to safely compute the 1D Thirring
condensate in regions where more than one thimble give a contribution; on the other hand, we
could safely compute (on a single thimble) at given values of `

<
. This is the same as in LQCD:

the sign problem does not allow us to compute observables at real values of the baryonic chemical
potential `�, but computations are safe at `� = 0 and at imaginary values of `� (in particular, we
can compute a few orders of the Taylor expansion of an observable). For (2+1)-flavor of highly
improved staggered quarks (HISQ) [11] with imaginary chemical potential, we computed cumulants
of the net baryon number density, given as

j=� (),+, `�) =
(
m

m ˆ̀�

)= ln / (),+, `;, `B)
+)3 , (3)

with ˆ̀� = `�/) and ;, B referring to light and strange flavors. Dependence on masses is not made
explicit: the light to strange ratio is the physical one. By computing at different imaginary values of
ˆ̀� (including ˆ̀� = 0) we could implement the program of subsection 2.1. Fig. 2 is the counterpart
of Fig. 1. We point out that

• In the left panel we can see how well the rational approximants for the number density j1�
describe data at different temperatures. Actually we show two different rational approximants
(enforcing parity or not): they are both fine. The big spike is expected to be there: it is related
to the Roberge Weiss transition, and it occurs at the temperature which is supposed to be the
relevant one ()', ). Minor spikes can be also spotted: they are harmless, and they can be
understood in terms of what we will explain in the next section (partial cancellation of zeros
between numerator and denominator).

1Notice that this is the simplest setting also with respect to another point: there is no reason for strictly asking
knowledge of the same number of derivatives at each point.
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Figure 2: (Left panel) The number density j1� at various values of ˆ̀� and different temperatures ) . Data
are shown together with two different rational approximants (enforcing parity or not): both describe data very
well. The big spike is expected: it is the hint for the Roberge Weiss transition. (Right panel) The singularity
pattern in the complex ˆ̀�, highlighting their expected overall compliance with Roberge Weiss, chiral and
Critical End Point scaling.

• In the right panel we display the singularities we found at different temperatures, relating them
to the expected singularity scaling pattern. These are the expected Lee-Yang singularities:
one expects a given scaling for the singularities connected to the Roberge Weiss transition,
to the chiral transition and to the QCD Critical End Point. While the last two are still under
investigation2, one can clearly see a consistent picture for the Roberge Weiss scaling: indeed
in [4] we were able to show that it is the expected one.

All in all, results are intriguing. That’s why we now want to show that the machinery is under
control for the the most popular arena for testing tools in the study of phase transitions, i.e. the
two-dimensional Ising model.

3. Testing the method on the 2d Ising model

Lee-Yang theory is one of the possible approach to the study of phase transitions. For an
example of its application, we refer the interested reader to [12], where the authors study the 2d
Ising model. We will basically follow their program, but will not rely on the study of many different
cumulants (as they do). We will instead make use of our multi-point Padè method and study only
two different cumulants at different values of temperature and magnetic field. The hamiltonian is
the well-known one, based on interactions between nearest neighbours and with external magnetic
field ℎ

� = −�
∑
<8, 9>

f8f9 − ℎ
∑
8

f8 (4)

2Indeed we now have an estimate for the CEP Temperature.
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with the only possible values f8 = ±1. In the following � will be set to � = 1. The partition function
can be written in terms of its zeros {V: }

/ (V, ℎ) = / (0, ℎ) 4 V2
∏
:

(1 − V

V:
) (5)

2 being a constant. If we define thermal cumulants by

〈〈*=〉〉 = m=

m (−V)= ln / (V, ℎ)

it is easy to show that they can be expressed as

〈〈*=〉〉 = (−1) (=−1)
∑
:

(= − 1)!
(V: − V)=

(= > 1) (6)

Furthermore, scaling relations describe the approach of leading zeros to critical inverse temperature

|V0 − V2 | ∼ !−1/a Im(V0) ∼ !−1/a . (7)

In Eq. (7) V0 is the Fisher zero, that is the closest zero of the partition function to the real axis,
resulting in the closest singularity of cumulants to the real axis3, V2 is the critical inverse temperature
and a is the relevant critical exponent.
Our program now entails four steps: (1) we compute the = = 2 thermal cumulant (i.e. the specific
heat) at various inverse temperatures V and lattice sizes !; (2) for each ! we compute the rational
approximant '<= (V) by our multi-point Padè method; (3) at each ! we find the Fisher zero V0, which
is obtained as the the closest singularity of the cumulant to the real axis; (4) we study the finite size
scaling of the values of V0. The result of the procedure can be inspected in Fig. 3.

Figure 3: (Left panel) The scaling in 1/! of Im(V0), i.e. the imaginary part of the Fisher zero, detected as
that the closest singularity of the cumulant to the real axis. The correct critical exponent a = 1 is got with
fairly good accuracy. (Right panel) Once a has been recognised to be the right one, one can fit the value of
the critical inverse temperature V2 , which is reconstructed to per mille accuracy.

3V0 shows up together with its complex conjugate V∗0.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
4
8

Multi-point Padè for the study of phase transitions Francesco Di Renzo

• In the left panel we display the scaling in 1/! of Im(V0). Errors are computed by varying
results with respect to statistical errors for the cumulant and functional form for the rational
approximant. As one can see, the value of the relevant critical exponent a = 1 is got with
fairly good accuracy (1.03(3)).

• Once a = 1 has been recognised, we can fit the scaling of the real part Re(V0) (right panel),
thus finding the value of the critical inverse temperature. We get the very accurate result
V2 = 0.4405(5).

Once the critical inverse temperature is known, one can sit on top of it and study the scaling in !
of Im(ℎ0), ℎ0 being the Lee Yang zero, that is the closest singularity of a magnetic cumulant to
the real axis. Explicitly, our program again entails four steps: (1) we compute the = = 1 magnetic
cumulant (i.e. the magnetisation) at V = V2 and various values of external magnetic field ℎ and
lattice size !; (2) for each ! we compute the rational approximant '<= (ℎ) for the magnetisation by
our multi-point Padè method; (3) at each ! we find the Lee Yang zero ℎ0, which is the singularity
of the rational approximant for the magnetisation which is the closest to the real axis; (4) we study
the finite size scaling of the values of Im(ℎ0) (as we will see, ℎ0 always sits at Re(ℎ0) = 0).
Before we inspect this scaling behaviour, it is useful to have a closer look at the singularity pattern
in the complex ℎ plane at given values of !. In Fig 4 we depict the zeros of the numerator (blue
crosses) and of the denominator (red circles) of our '<= (ℎ) at different values of the lattice size !,
i.e. ! = 15 (left panel) and ! = 30 (right panel). We can easily make a couple of key observations.

• A few zeros of the denominator are canceled by corresponding zeros of the numerator. These
are not genuine pieces of information: actually their location vary when varying e.g. the order
of the Padé approximant [<, =]. On the other hand, genuine pieces of information (i.e. actual
zeros and poles) stay constant to a very good precision. Notice that this is the explanation for
the small spikes in Fig. 2: they are simply the shadow of cancellations which are indeed very
good, but not good enough to be invisible when plotting the rational approximant.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.1 0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 4: (Left panel) Zeros of the numerator (blue crosses) and of the denominator (red circles) of the
rational approximant '<= (ℎ) for the magnetisation on ! = 15 (left panel) and ! = 30 (right panel). We
highlight the closest singularity to the real axis, which is getting closer to the real axis itself as ! gets larger,
with real parts being Re(ℎ0) = 0. Plots are in the complex ℎ plane.
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• We can clearly see that, as the lattice size ! gets larger, the closest singularity (Lee Yang
zero, highlighted in the plot) gets closer to the real axis, with real parts being Re(ℎ0) = 0.

Finally, in Fig. 5 we plot the finite size scaling of Im(ℎ0). As one can see, the critical exponent in
is got with very good accuracy (this time, less than percent: −1.880(16) vs −1.875). The steps we
could take in the (much simpler) case of the Ising model would be the preferred conceptual path to
follow also for LQCD. Needless to say, it will take time before we can be in a position to do that.

4. Back to LQCD: a T-Padé application

We finally go back to LQCD for a (very) preliminary account of a new application. Till now
we have seen multi-point Padè approximants from data taken at a given temperature ) and different
values of ˆ̀�: with this we mean that we obtained different '<= ( ˆ̀�) at different ) values. With
the very same data, we can think of going the other way around, that is we can obtain '<= ()) at
different ˆ̀� values. Fig. 6 is an example of what we can get following this path. Of course, this
time singularities emerge in the complex ) plane.

5. Conclusions

The multi-point Padè method for the study of phase transitions has already proved to be quite
effective in the case of LQCD. Here we showed how the approach can provide very accurate results
when collecting a rich statistics is not such a hard numerical task (as it was the case for the 2d Ising

0 2 4 6 8 10 12 14 16 18

L1/8-2 10-3

0

0.01

0.02

0.03

0.04

0.05

0.06

Im
(h
0)

1.880(16)

Figure 5: Finite size scaling of Im(ℎ0). To guide the eye, we plot data versus !1/8−2, where the correct
critical exponent is taken. As the figure title we report the absolute value of the one we got, which turns out
to be a very accurate estimate, to less than percent.
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Figure 6: (Top-left panel) An example of '<= ()) for j1� at a given value of ˆ̀� on top of data taken at
different temperatures ) at the same given value of ˆ̀�. (Top-right) Actual measurements of j1� ( ˆ̀�) at a
given temperature ) plotted together with interpolating data obtained from '<= ()). Everything looks pretty
smooth; we plot in a different colour the only data point possibly not falling smoothly on top of actual data.
(Bottom-left) Zeros of denominator (red) and zeros of numerator (blue) of '<= ()) in the complex ) plane at
a low value of ˆ̀�. (Bottom-right) The same plot at a value of ˆ̀� close to ˆ̀� = 8c () is expressed in GeV)

model). This is at same time a proof of concept of the reliability of the method and a stimulus to
do better in the case of finite density LQCD.

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant agreement No. 813942 (EuroPLEx).
We also acknowledge support from I.N.F.N. under the research project i.s. QCDLAT. This work
benefits from the HPC facility of the University of Parma, Italy.

References

[1] C. Schmidt, J. Goswami, G. Nicotra, F. Ziesché, P. Dimopoulos, F. Di Renzo et al.,
Net-baryon Number Fluctuations, Acta Physica Polonica B Proceedings Supplement 14
(2021) 241.

9

https://doi.org/10.5506/APhysPolBSupp.14.241
https://doi.org/10.5506/APhysPolBSupp.14.241


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
4
8

Multi-point Padè for the study of phase transitions Francesco Di Renzo

[2] S. Singh, P. Dimopoulos, L. Dini, F. Di Renzo, J. Goswami, G. Nicotra et al., Lee-Yang edge
singularities in lattice QCD : A systematic study of singularities in the complex `� plane
using rational approximations, Proceedings of The 38th International Symposium on Lattice
Field Theory — PoS(LATTICE2021) (2022) 544.

[3] G. Nicotra, P. Dimopoulos, L. Dini, F. Di Renzo, J. Goswami, C. Schmidt et al., Lee-Yang
edge singularities in 2+ 1 flavor QCD with imaginary chemical potential, Proceedings of The
38th International Symposium on Lattice Field Theory — PoS(LATTICE2021) (2022) 260.

[4] P. Dimopoulos, L. Dini, F. Di Renzo, J. Goswami, G. Nicotra, C. Schmidt et al., Contribution
to understanding the phase structure of strong interaction matter: Lee-Yang edge
singularities from lattice QCD, Phys. Rev. D 105 (2022) 034513 [2110.15933].

[5] AuroraScience collaboration, New approach to the sign problem in quantum field theories:
High density QCD on a Lefschetz thimble, Phys. Rev. D 86 (2012) 074506 [1205.3996].

[6] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and T. Sano, Hybrid Monte Carlo on
Lefschetz thimbles - A study of the residual sign problem, JHEP 10 (2013) 147 [1309.4371].

[7] H. Fujii, S. Kamata and Y. Kikukawa, Monte Carlo study of Lefschetz thimble structure in
one-dimensional Thirring model at finite density, JHEP 12 (2015) 125 [1509.09141].

[8] A. Alexandru, G. Basar, P.F. Bedaque, G.W. Ridgway and N.C. Warrington, Sign problem
and Monte Carlo calculations beyond Lefschetz thimbles, JHEP 05 (2016) 053
[1512.08764].

[9] F. Di Renzo, S. Singh and K. Zambello, Taylor expansions on Lefschetz thimbles, Phys. Rev.
D 103 (2021) 034513 [2008.01622].

[10] F. Di Renzo and K. Zambello, Solution of the Thirring model in thimble regularization, Phys.
Rev. D 105 (2022) 054501 [2109.02511].

[11] HPQCD, UKQCD collaboration, Highly improved staggered quarks on the lattice, with
applications to charm physics, Phys. Rev. D 75 (2007) 054502 [hep-lat/0610092].

[12] A. Deger and C. Flindt, Determination of universal critical exponents using Lee-Yang theory,
Phys. Rev. Research. 1 (2019) 023004 [1905.02379].

10

https://doi.org/10.22323/1.396.0544
https://doi.org/10.22323/1.396.0544
https://doi.org/10.22323/1.396.0260
https://doi.org/10.22323/1.396.0260
https://doi.org/10.1103/PhysRevD.105.034513
https://arxiv.org/abs/2110.15933
https://doi.org/10.1103/PhysRevD.86.074506
https://arxiv.org/abs/1205.3996
https://doi.org/10.1007/JHEP10(2013)147
https://arxiv.org/abs/1309.4371
https://doi.org/10.1007/JHEP12(2015)125
https://arxiv.org/abs/1509.09141
https://doi.org/10.1007/JHEP05(2016)053
https://arxiv.org/abs/1512.08764
https://doi.org/10.1103/PhysRevD.103.034513
https://doi.org/10.1103/PhysRevD.103.034513
https://arxiv.org/abs/2008.01622
https://doi.org/10.1103/PhysRevD.105.054501
https://doi.org/10.1103/PhysRevD.105.054501
https://arxiv.org/abs/2109.02511
https://doi.org/10.1103/PhysRevD.75.054502
https://arxiv.org/abs/hep-lat/0610092
https://doi.org/10.1103/PhysRevResearch.1.023004
https://arxiv.org/abs/1905.02379

	How it all began: from Taylor expansions on thimbles to imaginary B LQCD
	Multi-point Padè method for finite density Lattice QCD
	Basics of the multi-point Padè method
	First application of the multi-point Padè method to finite density LQCD

	Testing the method on the 2d Ising model
	Back to LQCD: a T-Padé application
	Conclusions

