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We calculate a resummed equation of state with lattice QCD simulations at imaginary chemical
potentials, generalizing the scheme introduced in our previous work to the case of non-zero µS ,
and focusing on the line of strangeness neutrality. We present results up to µB/T ≤ 3.5 on the
strangeness neutral line 〈S〉 = 0 in the temperature range 130 MeV≤ T ≤ 280 MeV. We also
extrapolate the finite baryon density equation of state to small non-zero values of the strangeness-
to-baryon ratio R = 〈S〉/〈B〉. We perform a continuum extrapolation using lattice simulations
of the 4stout-improved staggered action with 8, 10, 12 and 16 time slices. Finally we test the
resummation scheme in a small volume by comparison with direct simulations.
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Figure 1: (Ref. [12, 14]) The extrapolation of χB
1 to finite baryon chemical potential on a lattice of size

483 × 12.

1. Analytic continuation and the equation of state

The equation of state at vanishing baryon chemical potential µB is known from lattice QCD
simulations in the continuum limit (Refs. [1–3]) up to high enough temperatures to be matched to
perturbative results (Refs. [4–6]).

To extend the equation of state to finite chemical potentials it is common to use a Taylor
expansion in the chemical potentials for the pressure:

p̂ =
p

T4 (T, µ̂B, µ̂S) =
∑
i jk

1
i! j!

χBS
i, j (T) µ̂

i
B µ̂

j
S
, (1)

with
χBS
ij =

∂i+j p̂
∂i µ̂B∂ j µ̂S

(2)

and the dimensionless chemical potentials are µ̂i = µi
T . It is possible to include the charge chemical

potential µQ in the expansion, however in this proceedings µQ = 0 leading to χQ1 = 0.5χB
1 . The

influence of tuning this relation to χQ1 = 0.4χB
1 is shown to be small in Ref. [7]. The expansion

coefficients χBS
ij are interesting lattice observables with a variety of applications. They are known

up to the fourth order derivatives in the continuum limit (Refs. [8–11]) and up to 8th order at finite
lattice spacing (Refs. [11–13]).

If one computes the Taylor expansion of χB
1 up to the third order and to µB/T ' (2 − 2.5) it

shows undesirable properties for temperatures slightly above the crossover transition as shown in
Figure 1. In Ref. [14] this behavior has been reproduced in a simple toy model for truncation of the
Taylor expansion but vanishes for the infinite Taylor series.

2. Rescaling and expansion - the analysis

In Ref. [14] we introduced a resummed extrapolationmethod that avoids the undesired behavior
of the equation of state discussed above for the case of µS = µQ = 0. We now aim to improve
this scheme to achieve results which match the overall strangeness neutrality present in heavy ion
collision experiments. This means enforcing the conditions µQ = 0 and χS1 = 0, yielding a relation
between µS and µB:

dµS
dµB

= −
χBS

11

χS2
.
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Figure 2: (Ref. [7]) Left: The total derivative cB1 on the strangeness neutral line from our imaginary
chemical potential simulations. The data points at µ̂B = 0 show the second derivative d2 p̂

dµ̂2
B

. Right: The same

observables, with the temperature rescaled by a factor 1 + κ µ̂2
B.

On this line, total derivatives with respect to the baryochemical potential read

d
dµ̂B

=
∂

∂ µ̂B
+

dµ̂S
dµ̂B

∂

∂ µ̂S
=

∂

∂ µ̂B
−
χBS

11

χS2

∂

∂ µ̂S
.

The total derivatives of the pressure on the strangeness neutral line we denote by:

cBn (T, µ̂B) ≡
dn p̂(T, µ̂B)

dµ̂nB

�����µQ=0
χS

1 =0

.

We denote the Stefan-Boltzmann limit of those derivatives by cBN (µ̂B). In the special case of the
net baryon density it does not change compared to the case of µS = µQ = 0:

cB1 (T, µ̂B) = χB
1 −

χBS
11

χS2
χS1︸︷︷︸
=0

= χB
1

however, higher order derivatives differ from the χBS and include additional terms which have to
be computed.

The resummation scheme introduced in Ref. [14] is based on the approximate shifting of cB1
with imaginary µB for a fixed temperature as shown in figure 2.

The cause of this shifting behavior is not clear. It could suggest an approximate scaling variable
in the equation of state. It could be related to the critical scaling in the chiral limit. If the universal
contribution to cB1 is large, the curves are expected to approximately keep their shape. Furthermore,
this observation is consistent with the fits to the observation of constant width of the transition
reported in reference [15]. Regardless, the general idea of the resummation method works, even if
the shape of the curves is changing. However, the fast convergence is caused by the vanishing of
higher order contributions which means, that the shape of the curves is kept.

To further improve the scheme, we need to address the fact that our extrapolation method will
fail at high temperatures. To avoid this we introduced a correction by dividing cB1 by its Stefan-
Boltzmann limit. As can be seen in figure 3 the approximate shift is still there after this correction.
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Figure 3: (Ref. [7]) Illustration of the measurement of our proxy Π(T, µ̂B, Nτ) = T ′(T,µ̂B,N )−T
T µ̂B

.

To make use of it we measure the difference between the curves at µ̂B = 0 and at imaginary µ̂B as
also illustrated in figure 3. To measure the shift we need to fit a spline function defined at various
points through our data points. This allows us to define the proxy:

Π(T, µ̂B, Nτ) =
T ′(T, µ̂B, N) − T

T µ̂B
, (3)

which we can expand as

Π(T, µ̂B, Nτ) = λA
2 + λ

A
4 µ̂

2
B + λ

A
6 µ̂

4
B +

1
N2
τ

(
αA + βA µ̂2

B + γ
A µ̂4

B

)
. (4)

The λA
i coefficients will be used to calculate various quantities for the equation of state.
Our results are based on lattice QCD simulations of 2+1+1 flavours of dynamical quarks with

the tree-level Symanzik improved gauge action and four times stout smeared staggered fermions.
The simulation is performed on a LCP which is set by pion and kaon mass and at 〈nS〉 = 0. We
use four different lattice sizes: 323 × 8, 403 × 10, 483 × 12 and 643 × 16 to estimate the continuum
limit. For the imaginary chemical potentials we use the values µB

T = i jπ8 with j = 0, 3, 4, 5, (5.5), 6
and 6.5, where the value 5.5 is only available on the 483 × 12-lattice.

To present a comprehensive analysis on the systematic error we use 3 different sets of spline
node points at µB=0 and 2 different sets of spline node points at finite imaginary µB. To set the
scale, we use two methods: w0 or fπ based scale setting. Additionally, we consider 2 different
chemical potential ranges in the global fit: µ̂B ≤ 5.5 or µ̂B ≤ 6.5, and we use 2 functions for the
chemical potential dependence of the global fit: linear or parabola. We also include or not the
coarsest lattice, Nτ = 8, in the continuum extrapolation. In total, we perform 96 fits. We weigh
every result with a Q > 0.01 uniformly to take into account the quality of the fits.
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Figure 4: (Ref. [7]) The expansion results for the shift proxy of cB1 from equation 4.
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Figure 5: (Ref. [7]) Results for nB

T 3 and p

T 4 at various real chemical potentials along the strangeness neutral
line.

The results of this analysis are shown in figure 4. We make a fit to calculate derivatives and
constrain it with results from the hadron resonance gas at low temperature, which are also shown in
figure 4 and smoothly fit to our data points.

Now we can compute several observables for the equation of state. As an example we show
nB

T 3 and p

T 4 in figure 5.

3. Beyond strangeness neutrality

In addition to having results along the strangeness neutral line, we also investigate how the
equation of state can be extrapolated to small values of the strangeness density, slightly off the
χS1 = 0 line. Therefore we need to repeat the analysis discussed in the previous section for two more
observables, that allow us access to the strangeness derivatives as well as the mixed derivatives for
µ̂B and µ̂S . We are using the quantities χS2 and µS

µB
leading to the lambda coefficients λSS and λBS

which are shown in figure 6.
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Figure 6: (Ref. [7]) Results of the shift analysis for χS2 and µS
µB

.

Let us denote the value of the dimensionless strange quark chemical potential that solves χS1 = 0
at fixed T and µ̂B as µ̂?

S
. Still considering a fixed µ̂B and T , but changing µ̂S slightly from the

strangeness neutral choice by a small amount:

∆µ̂S ≡ µ̂S − µ̂
?
S, (5)

the dimensionless strangeness and baryon densities become:

χS1 (µ̂S) ≈ χS2 (µ̂
?
S)∆µ̂S (6)

χB
1 (µ̂S) ≈ χB

1 (µ̂
?
S) + χ

BS
11 (µ̂

?
S)∆µ̂S, (7)

where we only kept the linear leading order terms in ∆µ̂S . Now, we will express thermodynamic
quantities in terms of the strangeness-to-baryon fraction:

R =
χS1
χB

1
=

χS2 (µ̂
?
S
)∆µ̂S

χB
1 (µ̂

?
S
)∆µ̂S + χ

BS
11 (µ̂

?
S
)
. (8)

Inverting this equation we get:

∆µ̂S =
R χ̂B

1 (µ̂
?
S
)

χS2 (µ̂
?
S
) − RχBS

11 (µ̂
?
S
)
. (9)

This quantity is shown for µ̂B = 2 as a function of temperature for various values of R in figure 7.
Substituting Eq.(9) into Eq.(7) we obtain (to leading order in R):

χB
1 (T, µ̂B, R)

χB
1 (T, µ̂B, R = 0)

≈ 1 + R
χBS

11 (T, µ̂B, R = 0)
χS2 (T, µ̂B, R = 0)

, (10)

where all quantities on the right hand side are along the strangeness neutral line. We show the
results of a leading order (in R) extrapolation of the dimensionless baryon density as a function of
T at µ̂B = 2 for several values of R in the left hand side of figure 8.

At the strangeness neutral line the O(R) correction of the pressure vanishes. The leading order
correction gives:

p̂(T, µ̂B, R) ≈ p̂(T, µ̂B, R) +
1
2

d2 p̂
dR2 (T, µ̂B) R

2, (11)

6
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of 0.4χB
1 = χS1 in the hadron resonance (HRG) model, while the dashed lines show the evaluation of the

approximation of Eq. (9) in the HRG model.
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Figure 8: (Ref. [7]) Left: The dimensionless baryon density as a function of the temperature at µ̂B = 2, for
various values of the strangeness-to-baryon ratio R = χS1 /χ

B
1 . Right: The leading order Taylor coefficient

of the pressure in the strangeness-to-baryon ratio R on the strangeness neutral line as a function of the
temperature for several fixed values of µ̂B.

where
d2 p̂
dR2 =

χB
1 (T, µ̂B, R = 0)[

χS2 (T, µ̂B, R = 0) − Rχ11BS(T, µ̂B, R = 0)
]2 . (12)

We show the results of a leading order (in R) extrapolation of the dimensionless pressure as a
function of T at µ̂B = 2 for several values of R in the right hand side of figure 8.

4. Cross-check

In Ref. [16] we present a study of the equation of state of a quark gluon plasma at high
temperatures and densities from direct lattice simulations by employing reweighting techniques.
While large lattices as discussed throughout the rest of this proceedings are currently out of reach,

7
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Figure 9: (Ref. [16]) Comparison of different extrapolation methods for n̂L as defined in equation (13) with
direct simulations. The top panel shows the results of the resummation schemes without Stefan-Boltzmann
correction (Ref. [14]) in violet and with Stefan-Boltzmann correction (Ref. [7]) in orange as discussed in this
proceedings. The bottom panel shows the results from the Taylor expansion either directly from the µB = 0
data or from imaginary chemical potential. A spline interpolation of the direct results is included to lead the
eye.

we can test several extrapolation techniques with high precision on a 163 × 8 lattice with µs = 0
(leading to µS = µB

3 ). We execute each analysis on this lattice ensemble and show the results in
figure 9 for the observable

n̂L(T, µ̂B) =
dp̂

dµ̂B
=

1
3 (LT)3

(
∂ ln Z(T, µ̂B)

∂ µ̂q

)
µs=0

. (13)

In the top panel we present the result for the resummation methods discussed in this proceedings.
We compare the analysis from Ref. [14] without the Stefan-Boltzmann correction with the one
from Ref. [7] where the correction is included. As expected the addition of the Stefan-Boltzmann
correction allows the fast convergence at high temperatures and the extrapolated data agrees with
the direct simulation within errors. In the bottom panel we compare Taylor expansion results to
various order. We use two different methods to determine the Taylor expansion: On the one hand
we compute it directly from the µB = 0 data. On the other hand we can use the imaginary µB data
to measure the Taylor coefficients. For this specific setup the later method results in considerably
larger errors. We assume this is related to the small volume. The errors obtained when using
the imaginary potential are to large for a valuable comparison. For the sufficiently small errors
the Taylor extrapolation from µ = 0 agrees with the direct simulation if the NNNLO (up to µ̂6

B)
term is included. This means that about one order more of the expansion is required than for the
resummation method where the expansion agrees with the direct method if λ4 is included which
only requires the µ̂6

B term.

8
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