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We obtain the equation of state (EoS) and the sound velocity for 2-color QCD at low temperature
and high density and find that in the superfluid phase, 𝑐2

𝑠/𝑐2 > 1/3, where 1/3 is the value at the
relativistic limit. Several independent Monte Carlo studies on 2-color QCD have been conducted
intensively in recent years. These works have shown a clear evidence of phase transition between
hadronic and superfluid phases. In our paper [1], we have investigated the EoS and sound velocity
in both phases. Our result is consistent with chiral perturbation theory in a low 𝜇 regime of the
superfluid phase including the Bose-Einstein condensed phase, and shows a peak of sound velocity
in the high-density BCS phase. We also give detailed simulation results and a comment on the
holography bound in this proceedings.
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1. Introduction

Determination of the equation of state (EoS) for dense QCD at low temperature has been desired
recently especially because it is related with understanding neutron star observations including recent
simultaneous measurements of masses and radii of neutron stars. However, the first-principles
calculation of dense QCD at low temperature, beyond the onset scale (𝜇/𝑚𝜋 > 1/2) in particular,
is still extremely difficult because of the severe sign problem. On the other hand, the sign problem
is absent in even-flavor dense 2-color QCD because of the pseudo-reality of fundamental quarks.
Furthremore, if we add an external source term of the diquark condensate to explicitly break the U(1)
baryon symmetry, we can perform numerical simulations using an exact algorithm even beyond the
onset scale, namely, in the superfluid phase. 2-color QCD at zero chemical potential exhibits the
same properties as 3-color QCD, e.g., confinement, spontaneous chiral symmetry breaking, and
thermodynamic behaviors. It is expected that 2-color QCD even at non-zero chemical potential
could be a good testing ground in qualitatively understanding dense QCD.

Based on this motivation, several Monte Carlo studies on 2-color QCD have been conducted
independently and intensively in recent years (see references in Ref. [1]). One can conclude that
the 2-color QCD phase diagram has been quantitatively clarified; even at fairly high temperature,
𝑇 ≈ 100 MeV, superfluidity can remain.

Now, we would like to focus on the EoS and the sound velocity in a low temperature and
high density regime. Several early works based on a phenomenological quark-hadron crossover
picture of neutron star matter [2, 3] suggested that the zero-temperature sound velocity squared,
𝑐2
𝑠 = 𝜕𝑝/𝜕𝑒, peaks in 𝑛𝐵 = 1–10𝑛𝑜 to be consistent with various observational constraints. Here,
𝑝, 𝑒 and 𝑛0 denote the pressure, internal energy density of the system, and nuclear saturation
density, respectively. More recently, based on a quarkyonic matter model, McLerran and Reddy [4]
have shown that the peak appears at 𝑛𝐵 = 1–5𝑛0. Furthermore, Kojo [5] proposed a microscopic
interpretation on the origin of the peak based on a quark saturation mechanism, which is supposed
to work for any number of colors. Actually, Kojo and Suenaga [6] argued that a similar peak of 𝑐2

𝑠

emerges not only in 3-color QCD, but also in 2-color QCD.

2. Lattice setup

The lattice gauge action used in this work is the Iwasaki gauge action As for the fermion action,
we take the naive Wilson fermion with the quark number density and diquark source terms,

𝑆𝐹 = (𝜓1 �̄�)
(
Δ(𝜇) 𝐽𝛾5

−𝐽𝛾5 Δ(−𝜇)

) (
𝜓1

𝜑

)
≡ Ψ̄MΨ,

(1)

where �̄� = −𝜓𝑇
2 𝐶𝜏2, 𝜑 = 𝐶−1𝜏2�̄�

𝑇
2 . Here, the indices 1, 2 of 𝜓 denote the label of the flavor, and

the Δ(𝜇)𝑥,𝑦 is the Wilson-Dirac operator with the number operator. The additional parameter 𝐽
corresponds to the diquark source parameter, which allows us to perform the numerical simulation
in the superfluid phase. Note that 𝐽 = 𝑗 𝜅, where 𝑗 is a source parameter in the corresponding
continuum theory, and 𝜅 is the hopping parameter. The𝐶 in �̄�, 𝜑 is the charge conjugation operator,
and 𝜏2 acts on the color index. The square of the extended matrix (M) can be diagonal, but
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det[M†M] corresponds to the fermion action for the four-flavor theory, since a single M in Eq.
(1) represents the fermion kernel of the two-flavor theory. To reduce the number of fermions, we
take the root of the extended matrix in the action. In practice, utilizing the Rational Hybrid Monte
Carlo (RHMC) algorithm, we can generate gauge configurations.

In this work, we perform the simulation with (𝛽, 𝜅, 𝑁𝑠, 𝑁𝜏) = (0.80, 0.159, 16, 16). According
to Ref. [7], once we introduce the physical scale as 𝑇𝑐 = 200 MeV, where 𝑇𝑐 denotes the pseudo-
critical temperature of chiral phase transition at 𝜇 = 0, then our parameter set, 𝛽 = 0.80 and 𝑁𝜏 = 16
(𝑇 = 0.39𝑇𝑐), corresponds to 𝑎 ≈ 0.17 fm and 𝑇 ≈ 79 MeV. The mass of the lightest pseudo-scalar
(PS) meson at 𝜇 = 0, 𝑚𝑃𝑆 , is still heavy in our simulations, 𝑎𝑚𝑃𝑆 = 0.6229(34) (𝑚𝑃𝑆 ≈ 750
MeV). As for the values of 𝑎𝜇, we generate the configurations at intervals of 𝑎Δ𝜇 = 0.05. The
number of configuration for each parameter is 100–300. The statistical errors are estimated by the
jackknife method.

3. Phase structure at 𝑇 = 79 MeV

We show the schematic phase structure in Fig. 1 and summarize the definition of each phase
in Table 1, which is an extract from Ref. [8]. The order parameters that help classify the phases

Figure 1: Schematic 2-color QCD phase diagram. Each phase is defined in Table 1.

Hadronic Superfluid
Hadronic matter BEC BCS

⟨|𝐿 |⟩ zero zero
⟨𝑞𝑞⟩ zero zero non-zero non-zero

⟨𝑛𝑞⟩ zero non-zero 0 <
⟨𝑛𝑙𝑎𝑡𝑡.𝑞 ⟩
𝑛tree
𝑞

< 1 ⟨𝑛𝑙𝑎𝑡𝑡.𝑞 ⟩
𝑛tree
𝑞

≈ 1

Table 1: Definition of phases.

are the Polyakov loop ⟨|𝐿 |⟩ and diquark condensate ⟨𝑞𝑞⟩, whose zero/nonzero values indicate the
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appearance of confinement and superfluidity, respectively. We found that the superfluidity emerges
at 𝜇𝑐/𝑚𝑃𝑆 ≈ 0.5 as predicted by the chiral perturbation theory (ChPT) [9]. It is natural to use
𝜇/𝑚𝑃𝑆 as a dimensionless parameter of density since the critical value 𝜇𝑐 can be approximated by
𝑚𝑃𝑆/2 even if the value of𝑚𝑃𝑆 in numerical simulation would be changed 1. We also confirmed that
the scaling law of the order parameter around it is consistent with the ChPT prediction. Furthermore,
we measured the quark number operator, 𝑛𝑙𝑎𝑡𝑡 .𝑞 ≡ 𝑎3𝑛𝑞 =

∑
𝑖 𝜅⟨�̄�𝑖 (𝑥) (𝛾0 − I4)𝑒𝜇𝑈4(𝑥)𝜓𝑖 (𝑥 + 4̂) +

�̄�𝑖 (𝑥) (𝛾0 + I4)𝑒−𝜇𝑈†
4 (𝑥 − 4̂)𝜓𝑖 (𝑥 − 4̂)⟩. We identified the regime where ⟨𝑛𝑙𝑎𝑡𝑡 .𝑞 ⟩ is consistent with

the free quark theory 𝑛tree
𝑞 (see Eq. (26) in Ref. [10]) as the BCS phase. Thus, we concluded that

there are hadronic, hadronic-matter, Bose-Einstein condesed (BEC) and BCS phases at 𝑇 = 79
MeV, although there is no clear boundary between the BEC and BCS phases. Interestingly, up to
𝜇/𝑚𝑃𝑆 = 1.28 (𝜇 ≲ 960 MeV), the confining behavior remains [11], while nontrivial instanton
configurations have been discovered from calculations of the topological susceptibility [8]. It
indicates that a naive perturbative picture, for instance, pQCD, is not yet valid in the density regime
studied here.

4. Equation of state and velocity of sound at finite 𝜇

Now, we utilize a fixed scale method to obtain the EoS at finite density [10]. The trace
anomaly can be described by the beta-functions of various parameters and the trace part of the
energy-momentum tensor. In our lattice setup, which is explicitly given by

𝑒 − 3𝑝 =
1

𝑁3
𝑠𝑁𝜏

(
𝑎
𝑑𝛽

𝑑𝑎
|LCP⟨

𝜕𝑆

𝜕𝛽
⟩𝑠𝑢𝑏. + 𝑎

𝑑𝜅

𝑑𝑎
|LCP⟨

𝜕𝑆

𝜕𝜅
⟩𝑠𝑢𝑏. + 𝑎

𝜕 𝑗

𝜕𝑎
|LCP⟨

𝜕𝑆

𝜕 𝑗
⟩𝑠𝑢𝑏.

)
.

(2)

Here, 𝑎 is the lattice spacing, and the beta-function for each parameter is evaluated at 𝜇 = 𝑇 = 0
along the line of constant physics (LCP). Note that there is no renormalization for the quark number
density as it is a conversed quantity. We take all physical observables in the 𝑗 → 0 limit, which
implies that the third term in the right side can be eliminated. ⟨O⟩𝑠𝑢𝑏. (𝜇) denotes the subtraction of
the vacuum quantity. Thus, ideally, we should take ⟨O⟩𝑠𝑢𝑏. (𝜇) = ⟨O(𝜇, 𝑇)⟩ − ⟨O(𝜇 = 0, 𝑇 = 0)⟩,
but the exact zero-temperature simulations is practically difficult. In this work, we take ⟨O⟩𝑠𝑢𝑏. (𝜇) =
⟨O(𝜇, 𝑇 = 79MeV)⟩ − ⟨O(𝜇 = 0, 𝑇 = 79MeV)⟩.

Utilizing the scale setting function (Eq. (23)) and a set of (𝛽, 𝜅) with a fixed mass ratio of pseu-
doscalar and vector mesons 𝑚𝑃𝑆/𝑚𝑉 (Table 1) in Ref. [7], the coefficients can be nonperturbatively
determined as

𝑎𝑑𝛽/𝑑𝑎 |𝛽=0.80,𝜅=0.159 = −0.352, 𝑎𝑑𝜅/𝑑𝑎 |𝛽=0.80,𝜅=0.159 = 0.0282. (3)

5. Simulation results

The first term of the RHS in Eq. (2) is given by the measurement of the gauge action. The
raw data are plotted in the left panel of Fig. 2. We find that they are consistent with zero in the

1It is expected that the corresponding critical value of 𝜇 would be 𝜇𝑐/𝑚𝑁 ≈ 1/3 if the hadronic-superfluid phase
transition occurs also in the case of 3-color QCD, where 𝑚𝑁 denotes the nucleon mass.
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Figure 2: (Left): Raw data of ⟨𝜕𝑆/𝜕𝛽⟩𝑠𝑢𝑏. for each 𝜇 and 𝑗 . The purple dashed line denotes the critical
value, 𝜇𝑐, which is the hadronic-superfluid phase transition point, while the green dashed line indicates that
the BEC-BCS crossover occurs around this value of 𝜇. (Right): Scheme dependence of the pressure.

hadronic phase (except for near the phase transition point), while increasing in the BEC phase
and then decreasing in the BCS phase. Although we have determined the phase structure by the
measurement of several physical observables in each phase as defined in Table 1, the results for
⟨𝜕𝑆/𝜕𝛽⟩𝑠𝑢𝑏. indicate that from the value of gauge action during the configuration generation, we
can estimate where the hadronic-superfluid phase transition and the BEC-BCS crossover occur.
Furthermore, we can see that the 𝑗-dependence is mild, so that we take the constant extrapolations
of the 𝑗 = 0.01 and 𝑗 = 0.02 data in the superfluid phase.

The second term of the RHS in Eq. (2) is given by

⟨𝜕𝑆
𝜕𝜅

⟩ = 1
𝜅

(
Tr𝑐,𝑠, 𝑓1 − 𝑁 𝑓 ⟨𝑞𝑞⟩

)
. (4)

Thus, we measure the chiral condensate. To obtain the extrapolated value at 𝑗 = 0, we perform the
reweighting of 𝑗 and take the linear extrapolation (see Fig.8 in Ref. [8]).

The pressure can be expressed by the integral of the number density over 𝜇 in the thermodynamic
limit. On the lattice, two schemes with different discretization errors have been proposed in Ref. [10]:

Scheme I : 𝑝

𝑝𝑆𝐵
(𝜇) =

∫ 𝜇

𝜇𝑜
𝑑𝜇′𝑛𝑙𝑎𝑡𝑡 .𝑞 (𝜇′)∫ 𝜇

𝜇𝑜
𝑑𝜇′𝑛tree

𝑞 (𝜇′)
, (5)

Scheme II : 𝑝

𝑝𝑆𝐵
(𝜇) =

∫ 𝜇

𝜇𝑜
𝑑𝜇′

𝑛𝑐𝑜𝑛𝑡.
𝑆𝐵

𝑛tree
𝑞

𝑛𝑙𝑎𝑡𝑡 .𝑞 (𝜇′)∫ 𝜇

𝜇𝑜
𝑑𝜇′𝑛𝑐𝑜𝑛𝑡.

𝑆𝐵
(𝜇′)

. (6)

Here, 𝑝𝑆𝐵 (𝜇) denotes the pressure value at the Stefan-Boltzman (SB) limit, which is obtained by
the numerical integration of the number density of quarks in the relativistic limit. 𝜇𝑜 represents
the onset scale, namely, the starting point at which ⟨𝑛𝑞⟩ becomes nonzero as 𝜇 increases. In the
continuum theory, the pressure scales as 𝑝𝑆𝐵 (𝜇) =

∫ 𝜇
𝑛𝑐𝑜𝑛𝑡.
𝑆𝐵

(𝜇′)𝑑𝜇′ ≈ 𝑁 𝑓 𝑁𝑐𝜇
4/(12𝜋2) in the

high 𝜇 regime, where 𝑁 𝑓 (𝑁𝑐) is the number of flavors (colors)
The simulation results are plotted in the right panel in Fig. 2. First of all, we can see that the

scheme dependence of 𝑝 is negligible. It indicates that the discretization effect of our simulation
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is small. At 𝜇𝑐 = 𝑚𝑃𝑆/2 for the hadronic-superfluid phase transition (purple vertical line), 𝑝 takes
a nonzero value since ⟨𝑛𝑞⟩ becomes nonzero in the hadronic-matter phase. Thus, ⟨𝑛𝑞⟩ becomes
nonzero before the hadronic-superfluid phase transition, then 𝜇𝑐 is not the same as 𝜇𝑜. The low
but finite temperature effects cause the discrepancy between them as discussed in [8]. We can see
that our data monotonically increase and approach the value in the relativistic limit. The value of
𝑝/𝑝𝑆𝐵 is ≈ 0.84 at the highest density in our simulation.

The trace anomaly and pressure (Scheme II) are shown in Fig. 3. For the trace anomaly, we plot
the gauge part (the first term in Eq. (2)) and minus the fermion part (the second term) separately.
Both parts are normalized by 𝜇4 to see the dimensionless asymptotic behavior. The magnitude
of each part has a peak around the hadronic-superfluid phase transition. It is very similar to the
emergence of the peak of (𝑒 − 3𝑝)/𝑇4 around the hadronic-QGP phase transition at 𝜇 = 0.

 0
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 0.25  0.5  0.75  1  1.25  1.5
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(e-3p)g/µ
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Figure 3: Trace anomaly and pressure as a function of 𝜇/𝑚𝑃𝑆 . The circle and cross symbols denote the
gauge part and minus the fermion part of the trace anomaly, respectively. We also show 𝑝/𝜇4 at the relativistic
limit, 𝑝𝑆𝐵/𝜇4 = 𝑁 𝑓 𝑁𝑐/(12𝜋2).
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Figure 4: (Left): The EoS as a function of 𝜇/𝑚𝑃𝑆 . (Right): Sound velocity squared as a function of 𝜇/𝑚𝑃𝑆 .
The horizontal line (orange) denotes the value in the relativistic limit, 𝑐2

𝑠/𝑐2 = 1/3. The blue curve shows
the result of ChPT.

Combining the data of 𝑒 − 3𝑝 and 𝑝 obtained above, we finally obtain the EoS and sound
velocity in Fig. 4. In the left panel, we normalize 𝑒 and 𝑝 by 𝜇𝑐 so as to be dimensionless. We can
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see that both 𝑒 and 𝑝 are consistent with zero in the hadronic phase. Thus, these thermodynamic
quantities are not changed even if 𝜇 increases before the hadronic-superfluid phase transition. Note
that 𝑒 ≈ 0 in hadronic phase indicates that the nonperturbative beta-functions of 𝛽 and 𝜅 given by
Eq. (3) work well enough to make the parts of trace anomaly, (𝑒 − 3𝑝)𝑔 and (𝑒 − 3𝑝) 𝑓 , cancel each
other.

Now, let us focus on the sound velocity depicted in the right panel in Fig. 4. Here, we evaluate
𝑐2
𝑠 (𝜇) = Δ𝑝(𝜇)/Δ𝑒(𝜇), where Δ𝑝(𝜇) and Δ𝑒(𝜇) are estimated by the symmetric finite difference,

i.e.,Δ𝑝(𝜇) = (𝑝(𝜇+Δ𝜇)−𝑝(𝜇−Δ𝜇))/2. First of all, our results are consistent with the prediction of
ChPT [10, 12], which is given by 𝑐2

𝑠/𝑐2 = (1−𝜇4
𝑐/𝜇4)/(1+3𝜇4

𝑐/𝜇4), in the BEC phase. We also find
that 𝑐2

𝑠/𝑐2 is larger than 1/3, which is the value in the relativistic limit, at higher densities than the
regime where the BEC-BCS crossover occurs. Eventually, our data seem to peak around 𝜇 ≈ 𝑚𝑃𝑆

and, as density increases further, decrease so as to go away from the ChPT prediction. Such a peak
of the sound velocity is a characteristic feature previously unknown from any lattice calculations for
QCD-like theories. For example, in the finite temperature case, the sound velocity monotonically
increases in 𝑇 > 𝑇𝑐 and approaches the relativistic limit as the temperature increases [13, 14].

Here, we give a comment on the holography bound. It is a conjecture that 𝑐2
𝑠/𝑐2 ≤ 1/3

is satisfied for a broad class of four-dimensional theories proposed by Ref. [15]. The paper
itself studies the finite temperature case in the context of holography. Our result from the first-
principles calculation shows that the bound is broken in the case of finite density. Furthermore,
the counterexamples consisting of strongly coupled theories at finite density are also known in the
context of holography [16].

6. Summary and discussion

It is strongly believed that at ultrahigh density, 𝑐2
𝑠/𝑐2 approaches the relativistic limit. Then,

there arises a question of how it approaches 1/3. According to the pQCD analysis (see Appendix A
in [17]), it scales as 𝑐2

𝑠/𝑐2 ≈ (1−5𝛽0𝛼
2
𝑠/(48𝜋2))/3, where 𝛽0 = (11𝑁𝑐−2𝑁 𝑓 )/3 denotes the 1-loop

coefficient of the beta-function. Thus, 𝑐2
𝑠/𝑐2 approaches the asymptotic value from below. On the

other hand, a result based on the resummed perturbation theory suggests that 𝑐2
𝑠/𝑐2 approaches

the limit from above [18]. In the numerical simulations, the maximum value of 𝜇 is limited by
𝜇 ≪ 1/𝑎 to avoid the strong lattice artefact. Otherwise, the hopping term of fermions would be
partially suppressed by the factor 𝑒−𝑎𝜇 in the Wilson-Dirac operator. For the extension to larger
chemical potential, we need to perform smaller lattice spacing or lighter quark mass simulations.
Furthermore, to obtain 𝑐𝑠 at 𝑇 = 0, it is also required to see the EoS in the lower temperature regime
by carrying out larger volume simulations.

According to Ref. [5], a peak of 𝑐2
𝑠 appears due to the development of the quark Fermi sea

just after the saturation of low momentum quarks. The density at which the peak appears in our
results is apparently low, i.e., 𝜇 ≈ 𝑚𝑃𝑆 , but seems sufficiently high that the quark Fermi sea would
be fully developed. It supports the predictions from several effective models based on the presence
of the quark Fermi sea [4–6]. Furthermore, it is reported that the peak of sound velocity emerges
around BEC-BCS crossover also in condensed matter systems with finite-range interactions [19].
To ask whether or not the emergence of the peak structure is a universal property of superfluids
in a BEC-BCS crossover regime, it would be important to investigate the origin of this structure
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as another future work. If the peak of sound velocity would be a universal property even for real
3-color QCD as discussed in Refs. [5, 6], then it will change a conventional picture that a first
order transition from stiffened hadronic matter to soft quark matter is responsible for the presence
of massive neutron stars.
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