
P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
5
3

A new way to resum Lattice QCD equation of state at
finite chemical potential

Sabarnya Mitra,𝑎,∗ Prasad Hegde𝑎 and Christian Schmidt𝑏
𝑎Centre for High Energy Physics, Indian Institute of Science, Bangalore - 560012, India
𝑏Fakultät für Physik, Universität Bielefeld, Bielefeld D-33615, Germany
E-mail: sabarnyam@iisc.ac.in, prasadhegde@iisc.ac.in,
schmidt@physik.uni-bielefeld.de

The Taylor expansion of thermodynamic observables at a finite baryon chemical potential 𝜇𝐵
is an oft-used method to circumvent the well-known sign problem of Lattice QCD. A reliable
Taylor estimate demands sufficiently high-ordered calculations in chemical potential 𝜇 for a
proper estimate of its radius of convergence. Owing to the associated difficulty and limitations of
precision in calculating these high-order Taylor coefficients, it becomes essential to look for various
alternative resummation schemes which can work around this computational hurdle. Recently,
a way to resum exponentially, the contributions of the first 𝑁 baryon charge density correlation
functions 𝐷1, . . . , 𝐷𝑁 to the Taylor series to all orders in 𝜇𝐵 was proposed in Phys. Rev. Lett.
128, 2, 022001 (2022). Since the correlation functions 𝐷𝑛 are calculated stochastically using
estimates from different random volume sources, the resummation formulation gets affected by
biased estimates, which can become very drastic and can radically misdirect the calculations for
large values of 𝑁 , 𝜇 and also higher order 𝜇 derivatives of free energy.In this work, we present
a cumulant expansion procedure that allows to investigate and regulate these biased estimates at
different orders in 𝜇. We find that the unbiased estimates in the cumulant expansion can truly
capture the genuine higher-order stochastic fluctuations of the higher order correlation functions,
which got suppressed by the exponential resummation formulation. Finally, we introduce an
unbiased formalism of exponential resummation, which when expanded in a series, can exactly
reproduce the Taylor series upto a desired order in 𝜇. This allows to regain the knowledge of
reweighting factor and many other important properties of the partition function, which got entirely
lost while implementing the cumulant expansion scheme.
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1. Introduction

The QCD Equation of State (EoS), illustrating the QCD Phase diagram is of significant impor-
tance in the parlance of QCD phase transitions and also in the study of heavy-ion collisions [1–4].
In principle, the entire phase diagram can be completely explained from a comprehensive study of
the gauge theory of QCD. But, in reality, it is still a conjecture from a practical standpoint, with
many salient and robust features remaining to be established. Hence, for a proper unfazed conclu-
sion, an unambiguous thermodynamic approach is adopted, which revolves around the important
calculations of the estimates of various thermodynamic observables.

The system considered, resembles a grand canonical ensemble of quarks interacting via gluons,
described by a grand canonical partition function Z(𝜇,𝑉, 𝑇), which, in principle, is given as a path
integral over all the constituent particle (quark) and gauge field (gluon) configurations. Unfortu-
nately, this path integral formulation yields an intractable, infinite-dimensional integral. Although
lattice QCD averts this problem by rendering this integral to a finite-dimensional one, the complex
integral measure at a finite 𝜇 inhibits the implementation of Monte-Carlo importance sampling
(MCIS). By virtue of the reweighting procedure [5–8], although the measure being weighted at
zero 𝜇 becomes real, the complex measure problem assumes the form of the sign problem [9–11],
which manifest in the observable part of the integral. On a positive note, reweighting enables the
application of MCIS for calculating Z by making the integral measure semi-positive definite.

The Taylor expansion of thermodynamic observables upto the first 𝑁 coefficients [12, 13] as
a function of 𝜇 is one of the numerous methods [14–20] adopted to evade the sign problem in
Lattice QCD. The slow rate of convergence and non-monotonic behaviour of the Taylor series
for a wide range of temperatures necessitate computations upto sufficiently high orders in 𝜇,
invoking calculation of higher-order Taylor coefficients. This directs one towards resummation of
Taylor series [21–26], which allows to conduct an all-ordered calculation with the knowledge of
a few Taylor coefficients. The exponential resummation [27] is one such resummation method,
instrumental in our work.

In this work, we present the mathematical form of Taylor expansion and exponential resum-
mation. We then comprehensively discuss about the emergence of biased estimates in exponential
resummation, which has the potential to become highly problematic in the regime of large values
and higher orders of 𝜇. We then come across the formulation of cumulant expansion [28–32],
which allows an order-by-order analysis of biased estimates, but unfortunately at the cost of the
reweighting factor and hence, the invaluable partition function itself. Finally, we present an unbi-
ased formulation of exponential resummation, which reproduces the Taylor (QNS) expansion upto
a given order of 𝜇 apart from a newly defined reweighting factor and partition function altogether.

2. Setup of the simulation

In our work, we have used Highly Improved Staggered Quark (HISQ) action [33–35] for the
fermions and tree-level improved Symanzik gauge action [36, 37] for the gauge fields. The work
has been done on a 323 × 8 lattice, using 2+1 flavor QCD with the quark masses chosen to satisfy
𝑚𝑢 = 𝑚𝑑 = 𝑚𝑠/27. With a fixed lattice spacing and coupling parameter 𝛽, these masses are
tuned appropriately to their physical values, so that they produce physical pion and kaon masses,
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as directed by chiral perturbation theory. This therefore fixes the line of constant physics for our
work [12, 38, 39]. We have collected gauge configurations for two temperatures at T = 135 and 157
MeV, which in 𝛽 scale, corresponds to 𝛽 = 6.245 and 6.390 respectively. We have worked with 20K
configurations for both baryon (𝜇𝐵) and isospin (𝜇𝐼 ) chemical potentials. Recent work for 176 MeV
is in progress and also the number of gauge field configurations is increased for 𝜇𝐵 for more statistics.
Although we worked mostly upto 𝐷4, all the eight derivatives till 𝐷8 are calculated stochastically
using O(500) random volume sources (RVS) per configuration. All these correlation functions 𝐷𝑛

for 𝑛 ≤ 𝑁 can be expressed as different linear combinations of traces [25, 40], involving products of
fermion propagator M−1 and different ordered 𝜇 derivatives of fermion matrix M. The stochastic
calculation of these traces arises due to the inexact computation of M−1. A detailed description of
the gauge ensembles and scale setting can be found in Ref. [13].

3. Taylor series and Exponential Resummation

The Taylor expansion of excess pressure Δ𝑃/𝑇4 = 𝑃(𝜇, 𝑇)/𝑇4 − 𝑃(0, 𝑇)/𝑇4 and number
density N/𝑇3, in terms of 𝜇𝐵 upto the first 𝑁 derivatives [12, 13] are given by

Δ𝑃
𝑄

𝑁
(𝑇, 𝜇𝐵)
𝑇4 =

1
𝑉𝑇3 ln

[
Z(𝜇)
Z(0)

]
=

𝑁∑︁
𝑛=1

X2𝑛
(2𝑛)! �̂�

2𝑛
𝐵 (1)

where X𝑛 are the 𝑛th order baryon quark number susceptibilities (QNS) and �̂�𝐵 = 𝜇𝐵/𝑇 . The
CP symmetry of QCD [25] ensures that pressure and number density constitutes even and odd series
in 𝜇𝐵 respectively. The exponentially resummed estimate of excess pressure is given by

Δ𝑃𝑅
𝑁
(𝑇, 𝜇𝐵)
𝑇4 =

1
𝑉𝑇3 ln

〈
Re

[
exp

(
1
4

𝑁∑︁
𝑛=1

𝐷𝑛 (𝑇) �̂�𝑛𝐵

) ]〉
, 𝐷𝑛 (𝑇) =

1
𝑁𝑅

𝑁𝑅∑︁
𝑟=1

�̃�
(𝑟 )
𝑛 (𝑇) (2)

�̃�
(𝑟 )
𝑛 (𝑇) = 𝐷

(𝑟 )
𝑛 (𝑇)
𝑛!

where 𝐷
(𝑟 )
𝑛 (𝑇) = 𝜕𝑛

𝜕�̂�𝑛
𝐵

ln
[
detM (𝑟 ) (𝑇, 𝜇𝐵)

] ���
𝜇𝐵=0

The corresponding resummed and Taylor estimate of number density is given by

N𝑅,𝑄

𝑁

𝑇3 =
𝜕

𝜕�̂�𝐵

[
Δ𝑃

𝑅,𝑄

𝑁
(𝑇, 𝜇𝐵)
𝑇4

]
(3)

The factor of 1/4, as mentioned in Eqn. (2), represents staggered signature of fermion action
with fermion matrix M. In this equation, the angular brackets ⟨.⟩ represent the gauge ensemble
average and 𝐷

(𝑟 )
𝑛 is the 𝑟th estimate of the derivative 𝐷𝑛, out of 𝑁𝑅 estimates. In continuum

limit, these derivatives are the integrated 𝑛-point correlation functions of the product of the zeroth
component of the four baryon current density 𝐽𝛼 = (𝐽0, ®J) at different spacetime points 𝑥, which
are given by 𝐷𝑛 =

∫
𝑑4𝑥1 𝑑

4𝑥2 ... 𝑑
4𝑥𝑛 𝐽0(𝑥1) 𝐽0(𝑥2) ... 𝐽0(𝑥𝑛) [27]. The CP symmetry ensures

real-valued Z, thereby dictating that all 𝐷𝑛 are real for even 𝑛 and imaginary for odd 𝑛, for which
only the real part of the exponential is considered as shown in eqn. (2). It is therefore evident that

Δ𝑃𝑅
𝑁/𝑇4 = Δ𝑃

𝑄

𝑁
/𝑇4 +

∞∑︁
𝑛>𝑁

〈
Re

[
(𝐷1)𝐴1 (𝐷2)𝐴2 . . . (𝐷𝑁 )𝐴𝑁

]
�̂�𝑛𝐵

〉
(4)
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where every 𝑘-point correlation function 𝐷𝑘 satisfies
∑𝑁

𝑘=1 𝑘 · 𝐴𝑘 = 𝑛. The number density N𝑁/𝑇3

also exhibits similar comparative behaviour resembling eqn. (4).

4. Problem of Biased Estimates and Cumulant Expansion

4.1 Biased estimates
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Figure 1: Isospin pressure (left) and number density (right) plots for T = 135 MeV.

As shown in Fig. 1 and also in [27], the resummed results differ appreciably from the QNS
counterparts in the regime of higher values of 𝜇𝐼 . This stark difference arises from the higher order
contribution terms, as indicated in eqn. (4). More significantly, as given in eqn. (2), the different
powers of these different derivative estimates, from quadratic power onwards give rise to biased
estimates. This is because, some given random vector estimates are raised to higher powers than
the others, thereby treating different estimates on different footing in the sample of estimates.

(
𝐷𝑛

)𝑚
=

[
1
𝑁𝑅

𝑁𝑅∑︁
𝑟=1

𝐷
(𝑟 )
𝑛

]𝑚
=

[(
1
𝑁𝑅

)𝑚 𝑁𝑅∑︁
𝑟1=1

...

𝑁𝑅∑︁
𝑟𝑚=1

𝐷
(𝑟1 )
𝑛 ...𝐷

(𝑟𝑚 )
𝑛

]
≈ Biased estimate +

(
1
𝑁𝑅

)𝑚 𝑁𝑅∑︁
...

𝑁𝑅∑︁
𝑟1≠...≠𝑟𝑚

𝐷
(𝑟1 )
𝑛 ...𝐷

(𝑟𝑚 )
𝑛

(5)

The effects of these problematic biased estimates can become very pronounced and drastic,
specially in the regime of large values and higher orders of 𝜇𝐼 and estimating observables which are
higher order 𝜇𝐼 derivatives of free energy. This therefore motivates one to truncate the resummed
series in terms of different powers of 𝜇𝐼 and analyse the biased estimates for different orders of 𝜇𝐼 .
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4.2 Cumulant Expansion

The cumulant expansion of eqn. (2) upto 𝑀 cumulants in 𝜇𝐼 yield (barring the 1/𝑉𝑇3 factor)

ln
〈
𝑒𝑋𝑁

〉
=

𝑀∑︁
𝑛=1

𝜅𝑁𝑛

𝑛!
+ O(𝜅𝑁𝑀+1), 𝑋𝑁 =

𝑁∑︁
𝑛=1

𝐷2𝑛 (𝑇) �̂�2𝑛
𝐼 (6)

We exploited the efficacy of cumulant expansion for 𝜇𝐼 , where there is no sign problem, because
of the vanishing odd-ordered derivatives and also because of which, 𝑋𝑁 in eqn. (6) is manifestly
real, ensuring O(10𝐾) gauge configurations is good enough for an appreciable signal. We worked
with only the first 𝑀 = 4 cumulants and computed biased and unbiased cumulants, where the biased
cumulants 𝜅𝑁

𝑏,𝑛
are given by

𝜅𝑁𝑏,1 = ⟨𝑋𝑁 ⟩
𝜅𝑁𝑏,2 =

〈
𝑋2
𝑁

〉
− ⟨𝑋𝑁 ⟩2

𝜅𝑁𝑏,3 =
〈
𝑋3
𝑁

〉
− 3

〈
𝑋2
𝑁

〉
⟨𝑋𝑁 ⟩ + 2 ⟨𝑋𝑁 ⟩3

𝜅𝑁𝑏,4 =
〈
𝑋4
𝑁

〉
− 4

〈
𝑋3
𝑁

〉
⟨𝑋𝑁 ⟩ + 12

〈
𝑋2
𝑁

〉
⟨𝑋𝑁 ⟩2 − 6 ⟨𝑋𝑁 ⟩4 − 3

〈
𝑋2
𝑁

〉2

(7)

For unbiased cumulants 𝜅𝑁𝑢,𝑛, we replace 𝑋𝑛
𝑁

with 𝑈𝑛 [𝑋𝑁 ] for each 𝑛, in the cumulants of
eqn. (7). Here 𝑈𝑛 [𝑋𝑁 ] is the unbiased 𝑛th power of 𝑋𝑁 , where 𝑋𝑁 =

∑𝑁
𝑛=1 𝐷𝑛 �̂�

𝑛
𝐵

and unbiased
𝑛th power of 𝐷𝑚 is given by

𝑈𝑛 [𝐷𝑚] =
𝑛!∏𝑛−1

𝑘=0 (𝑁𝑅 − 𝑘)!

𝑁𝑅∑︁
...

𝑁𝑅∑︁
𝑟1≠...≠𝑟𝑛

𝐷
(𝑟1 )
𝑚 ...𝐷

(𝑟𝑛 )
𝑚 (8)

As shown in the plots in Fig. 1, the biased and unbiased results of pressure and number density
are in good agreement with the resummed and QNS results of similar orders respectively. The
unbiased cumulants managed to capture more higher-order fluctuations, which got suppressed by
the exponential behaviour of the resummed series [28]. The unbiased cumulant expansion results
hence, demonstrated that the difference between the resummed and QNS results is attributable to
the difference between biased and unbiased estimates.

But, while incorporating unbiasedness at different orders, the truncation of the resummed series
led to the loss of the reweighting factor and partition function altogether. This inspired the idea of
a newly defined exponential resummation scheme which would, in principle reproduce QNS upto
the desired order in 𝜇. In addition, a numerically different partition function with an associated
new reweighting factor is obtained, thereby re-enabling the essential calculations of phasefactor and
roots of partition function.

5. Unbiased Exponential Resummation

Motivated by the isospin results, we have implemented this new formalism of an unbiased
exponential resummation using 𝜇𝐵. Unlike 𝜇𝐼 , the odd-ordered derivatives are non-vanishing and
imaginary for 𝜇𝐵 and hence, it is necessary to extract the real part following eqn. (2) to obtain
the expression of the partition function Z. In this formalism, all mathematical manipulations are
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done at the level of individual RVS present within every gauge configuration constituting the gauge
ensemble. We have worked in two bases, which are stated as follows:

5.1 Chemical potential basis

In 𝜇 basis, with this new formalism, we define the unbiased pressure from a newly defined
partition function following the usual prescription of the exponential resummation as follows:

Δ𝑃𝑁
𝑢𝑏 (𝜇) =

1
𝑉𝑇3 ln Z𝑁

𝑢𝑏 (𝜇), Z𝑁
𝑢𝑏 (𝜇) =

〈
Re

[
exp

(
𝐴𝑁 (𝜇)

)]〉
, 𝐴𝑁 (𝜇) =

𝑁∑︁
𝑛=1

𝜇𝑛
C𝑛

𝑛!
(9)

where the C𝑛 for 1 ≤ 𝑛 ≤ 4 are given as follows:

C1 = 𝐷1,

C2 = 𝐷2 +
(
𝐷2

1 − 𝐷1
2)
,

C3 = 𝐷3 + 3
(
𝐷2𝐷1 − 𝐷2 𝐷1

)
+

(
𝐷3

1 − 3𝐷2
1 𝐷1 + 2𝐷1

3)
,

C4 = 𝐷4 + 3
(
𝐷2

2 − 𝐷2
2) + 4

(
𝐷3𝐷1 − 𝐷3 𝐷1

)
+ 6

(
𝐷2𝐷

2
1 − 𝐷2 𝐷

2
1

)
− 12

(
𝐷2𝐷1 𝐷1 − 𝐷2 𝐷1

2) + (
𝐷4

1 − 4𝐷3
1 𝐷1 + 12𝐷2

1 𝐷1
2 − 6𝐷1

4 − 3 (𝐷2
1)

2
)

(10)

Here, the powers of different 𝐷𝑛 are the unbiased powers of the respective different ordered
derivatives, calculated as per eqn. (8). The analysis from this basis is important in the sense, that
the degree of the unbiasedness in 𝜇 is exactly identical with the degree of the polynomial 𝐴(𝜇)
as given in eqn. (9). This therefore ascertains the exact order of Taylor or QNS expansion in 𝜇,
it will achieve, apart from the prescence of important beyond the QNS-order contributions, still
comprising biased estimates.

5.2 Cumulant basis

In cumulant basis, a new variable𝑊 is defined, where𝑊𝑁 =
∑𝑁

𝑛=1
𝜇𝑛

𝑛! 𝐷𝑛, we have

Δ𝑃𝑀
𝑢𝑏 (𝑊𝑁 ) =

1
𝑉𝑇3 ln Z𝑀

𝑢𝑏 (𝑊𝑁 ), Z𝑀
𝑢𝑏 (𝑊𝑁 ) =

〈
Re

[
exp

(
𝑌𝑀 (𝑊𝑁 )

)]〉
, 𝑌𝑀 (𝑊𝑁 ) =

𝑀∑︁
𝑛=1

L𝑛 (𝑊𝑁 )
𝑛!

(11)

which would reproduce exactly the first M cumulants in unbiased cumulant expansion of excess
pressure. The different unbiased powers of derivatives are calculated as before, as given in eqn. (8).
The L𝑛 (𝑊) of eqn. (11) upto 𝑀 = 4 for 1 ≤ 𝑛 ≤ 4 are as follows:

6
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L1(𝑊) = (𝑊)

L2(𝑊) =
[(
𝑊2

)
−

(
𝑊

)2
]

L3(𝑊) =
[(
𝑊3

)
− 3

(
𝑊2

) (
𝑊

)
+ 2

(
𝑊

)3
]

L4(𝑊) =
[(
𝑊4

)
− 4

(
𝑊3

) (
𝑊

)
+ 12

(
𝑊2

) (
𝑊

)2
− 6

(
𝑊

)4
− 3

(
𝑊2

)2
]

(12)

6. Results: Comparison between Biased and Unbiased formalism

The cumulant basis provides much more number of terms in addition to those of 𝜇 basis.
Although 𝜇 basis is important for simplicity and first-hand understanding, the cumulant basis
ensures a faster rate of convergence and agrees well with the 𝜇 basis results, as the additional terms
get almost cancelled out among themselves. This also vindicates a genuine series expansion.The
results in unbiased resummation are carried out therefore primarily, in cumulant basis.
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Figure 2: Baryon pressure (left) and phasefactor (right) plots for T = 135 and 157 MeV

The 2𝑛𝑑 and 4𝑡ℎ ordered unbiased pressure results in Fig. 2 are in better agreement with the
4𝑡ℎ ordered QNS results than the old biased counterparts and the difference is stark and highly
pronounced for 135 MeV. Surely, one can argue for higher statistics reducing the gauge noise,
allowing the comparison for higher values of 𝜇𝐵/𝑇 . Also, one can even vouch to increase the
number of RVS from 500 to even more, per gauge configuration, specially for the noisiest 𝐷1.

However, the solutions to these arguments come at the cost of huge computational time and
storage space for data extraction of every 𝐷𝑛. The pressure plots demonstrate that even with a
meagre 20𝐾 configurations with O(500) random vectors per configuration, the new formalism
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attains excellent agreement with QNS over the old one, thereby saving profound computational
time and storage space. The imaginary part of the argument in the exponential function constitutes
the phase-angle, the cosine of which forms the phasefactor in the biased and unbiased cases. The
biased and unbiased phasefactor results in Fig. 2 vary slightly, besides showing appreciable order-
by-order agreement, indicating that the difference between biased and unbiased pressure at 135
MeV is predominantly arising from phase quenched reweighting factor.

7. Conclusions

We have introduced a cumulant expansion which allows us to introspect the biased estimates and
substitute them with unbiased counterparts order-by-order, in terms of 𝜇𝐼 . The unbiased cumulant
expansion, although truncated, managed to capture the higher-order fluctuations which the old
exponential resummation could not efficiently serve to perform. Eventually, this results in the loss
of reweighting factor and partition functionZ itself. We then, therefore introduce a new exponential
resummation formalism, which unlike the old resummation, exudes an excellent agreement with
the QNS results, even using 20𝐾 configurations for 𝜇𝐵, with O(500) RVS per configuration.
This enables to retrieve the partition function and hence, preserve the thermodynamics altogether.
More significantly, this partially unbiased exponential resummation gives an all-ordered unbiased
exponential resummation reproducing the exact all-ordered QNS in the limit of an infinite cumulant
expansion series, apart from providing a much faster convergence with the QNS results.

The unbiased exponential resummed approach, outlined here is a new way of extending the
QCD EoS. Nevertheless, the possible connections between the approach presented here and various
other proposals in the literature [22, 41–43] still remain to be explored and therefore serve to be the
promising ingredients for numerous future works.
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