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We investigate hadron spectra in 2-color QCD using lattice simulation with 𝑁 𝑓 = 2 at low
temperature and finite density in which there appears not only the hadronic phase but also the
superfluid phase. We first calculate the pion and rho meson spectrum, which is well-known from
previous works. The spectral ordering of these mesons flips around the quark chemical potential
𝜇 = 𝑚0

𝜋/2 (𝑚0
𝜋 : the pion mass at 𝜇 = 0), where the phase transition between the hadronic and

superfluid phases occurs. For 𝜇 ≳ 𝑚0
𝜋/2, the effective mass for the pion linearly increases while

the one for the rho meson monotonically decreases. Furthermore, we measure hadron spectra
with the isospin 𝐼 = 0 and the angular momentum 𝐽𝑃 = 0±. The effective masses for the meson,
diquark, and antidiquark with the same quantum number become degenerate just below 𝜇 = 𝑚0

𝜋/2,
and the three hadrons have the same mass in the superfluid phase. It suggests that mixing occurs
between spectra associating with mesons and baryons due to the𝑈 (1)𝐵 symmetry breaking. This
phenomenon can be explained in the linear sigma model with the approximate 𝑆𝑈 (4) Pauli-Gursey
symmetry.
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1. Introduction

Exploration of Quantum Chromodynamics (QCD) in dense matter is one of the biggest issues.
In particular, it is important to investigate the microscopic structure such as hadron spectrum, which
underlies the macroscopic properties of dense QCD. At zero quark chemical potential (𝜇 = 0), the
lightest hadron is the pion (𝐼 = 1, 𝐽𝑃 = 0− meson), a property that can be proven if one neglects
the disconnected diagrams and assumes the 𝛾5 hermicity. At finite 𝜇 where the 𝛾5 hermicity is
broken, the spectral ordering of hadrons becomes nontrivial. Several analytical studies of the hadron
spectrum in dense matter have been carried out based on, e.g., hadron effective models [1] and
QCD sum rules [2]. Also, for any number of color QCD, the 𝜇 dependence of the hadron masses
can be shown to follow

𝑚(𝜇) = 𝑚(0) −𝑄𝐵𝜇, (1)

with the baryon charge𝑄𝐵, in the hadronic phase [3]. In lattice study, however, such a 𝜇 dependence
of the hadron spectrum is extremely hard to see due to the sign problem at low temperature.

In this work, we consider dense 2-color QCD theory, in which lattice simulations are available
even at finite density thanks to the pseudo-reality of quark fields under the 𝑆𝑈 (2) gauge symmetry.
Several lattice studies exploring the phase structure in 2-color QCD have been made (see references
in Ref. [4]); at low temperature, the hadronic phase turns into the superfluid phase at 𝜇 ≈ 𝑚0

𝜋/2
(𝑚0

𝜋 : the pion mass at 𝜇 = 0), where the diquark condensate ⟨𝑞𝑞⟩ becomes nonzero.
We attempt to investigate the 𝜇 dependence of the hadron spectrum in 2-color QCD with

𝑁 𝑓 = 2 in a low-temperature and finite-density regime. The previous works have observed nontrivial
features in the superfluid phase: the spectral ordering of the pion and rho meson [5, 6] and the
existence of the (pseudo) Nambu-Goldstone mode associated with the diquark condensation [6, 7].
In this paper, we focus on the hadron masses with the isospin 𝐼 = 0 and the total angular momentum
𝐽𝑃 = 0± as well as the pion and rho meson masses.

2. Formulation

2.1 Lattice action

For 2-color lattice QCD action, we utilize the Iwasaki gauge and the two-flavor Wilson fermion
actions. As in the case of Ref. [8], we also add the quark number operator and the diquark source
term to the above fermion action as

𝑆𝐹 = 𝜓̄1Δ(𝜇)𝜓1 + 𝜓̄2Δ(𝜇)𝜓2 − 𝐽𝜓̄1𝐾𝜓̄
𝑇
2 + 𝐽𝜓𝑇

2 𝐾𝜓1. (2)

Here, the indices 1, 2 denote the flavor label, and 𝐾 = (𝐶𝛾5)𝜏2 where 𝐶 is the charge conjugation
matrix and 𝜏2 is the Pauli matrix acting on color indices. The additional parameter 𝐽 = 𝑗 𝜅 denotes
the diquark source parameter, where 𝑗 and 𝜅 denote the source parameter in the corresponding
continuum theory and the hopping parameter, respectively. Here, we assume that 𝐽 takes a real
value. The Wilson-Dirac operator including the number operator, Δ(𝜇), is defined by

Δ(𝜇)𝑥,𝑦 = 𝛿𝑥,𝑦 − 𝜅

3∑︁
𝑖=1

[
(1 − 𝛾𝑖)𝑈𝑥,𝑖𝛿𝑥+𝑖,𝑦 + (1 + 𝛾𝑖)𝑈†

𝑦,𝑖
𝛿𝑥−𝑖,𝑦

]
− 𝜅

[
𝑒+𝜇 (1 − 𝛾4)𝑈𝑥,4𝛿𝑥+4̂,𝑦 + 𝑒

−𝜇 (1 + 𝛾4)𝑈†
𝑦,4𝛿𝑥−4̂,𝑦

]
. (3)
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2.2 Fermion propagators

The fermion propagators in this action are expressed as follows:

𝜓 𝑓 (𝑥)𝜓̄ 𝑓 (𝑦) = 𝑄−1(𝜇)Δ†(𝜇), 𝜓𝑇
𝑓 (𝑥)𝜓̄

𝑇
𝑓 (𝑦) = (𝐾𝛾5)𝑄−1(−𝜇)Δ†(−𝜇) (𝐾𝛾5),

𝜓2(𝑥)𝜓𝑇
1 (𝑦) = 𝐽𝑄−1(𝜇)𝐾, 𝜓̄𝑇

2 (𝑥)𝜓̄1(𝑦) = 𝐽 (𝐾𝛾5)𝑄−1(−𝜇)𝛾5, (4)

with the flavor index 𝑓 = 1, 2. Here 𝑄(𝜇) = Δ†(𝜇)Δ(𝜇) + 𝐽2. The upper-left equation shows the
normal propagator, and the upper-right one is associated with the backpropagation. The lower-left
and right ones are the so-called anomalous propagators, which represent a quark to antiquark and
an antiquark to quark change, respectively. The lower propagators come from the diquark source
term in the action, as is evident from the fact that they are proportional to 𝐽.

2.3 2-point correlation functions

The calculation of the 2-point correlation function in dense 2-color QCD has been performed
by Hands et al. [6], and we follow a line of their definitions. The operators for the pion and rho
meson (𝐼 = 1, 𝐽𝑃 = 0− and 𝐽𝑃 = 1−) are given by 𝑀1 = 𝜓̄1Γ𝜓2 or 𝜓̄2Γ𝜓1, where Γ = 𝛾5 for the
pion and Γ = 𝛾1 for the rho meson. The 2-point correlation functions read

⟨𝑀1(𝑡, ®𝑥)𝑀1†(0, ®𝑦)⟩ = Tr
[
𝑆𝑁 (𝑡, ®𝑥 |0, ®𝑦)Γ̄𝑆𝑁 (0, ®𝑦 |𝑡, ®𝑥)Γ

]
− Tr

[
𝑆𝐴(𝑡, ®𝑥 |0, ®𝑦)Γ̄𝑇𝑆𝐴(0, ®𝑦 |𝑡, ®𝑥)Γ

]
. (5)

Here Tr[·] denotes the trace in the color and spinor spaces and Γ̄ = 𝛾4Γ
†𝛾4. The first and second

terms of the right side represent the contributions of the normal and anomalous propagators,
respectively.

The meson operators with 𝐼 = 0, 𝐽𝑃 = 0± are defined by 𝑀0 = (𝜓̄1Γ𝜓1 + 𝜓̄2Γ𝜓2)/
√

2, where
Γ = 1 for 0+ and Γ = 𝛾5 for 0−, and then their 2-point correlation functions are given by

⟨𝑀0(𝑡, ®𝑥)𝑀0†(0, ®𝑦)⟩ = − 2 Tr[𝑆𝑁 (𝑡, ®𝑥 |𝑡, ®𝑥)Γ] Tr
[
𝑆𝑁 (0, ®𝑦 |0, ®𝑦)Γ̄

]
+ Tr

[
𝑆𝑁 (𝑡, ®𝑥 |0, ®𝑦)Γ̄𝑆𝑁 (0, ®𝑦 |𝑡, ®𝑥)Γ

]
+ Tr

[
𝑆𝐴(𝑡, ®𝑥 |0, ®𝑦)Γ̄𝑇𝑆𝐴(0, ®𝑦 |𝑡, ®𝑥)Γ

]
. (6)

The first term of the right side corresponds to the disconnected diagram. Note that the third term
has the opposite sign to that of the second term in Eq. (5).

The diquark operators in 𝐼 = 0, 𝐽𝑃 = 0± channel are defined by𝐷0 = (𝜓𝑇
1 𝐾 Γ̄𝜓2−𝜓𝑇

2 𝐾 Γ̄𝜓1)/
√

2,
leading to the 2-point correlation functions:

⟨𝐷0(𝑡, ®𝑥)𝐷0†(0, ®𝑦)⟩ = − 2 Tr
[
𝑆𝐴(𝑡, ®𝑥 |𝑡, ®𝑥)Γ𝐾

]
Tr
[
𝑆𝐴(0, ®𝑦 |0, ®𝑦)𝐾 Γ̄

]
− Tr

[
𝑆𝑁 (𝑡, ®𝑥 |0, ®𝑦)Γ𝐾𝑆𝑁 (0, ®𝑦 |𝑡, ®𝑥)𝐾 Γ̄

]
− Tr

[
𝑆𝑁 (𝑡, ®𝑥 |0, ®𝑦)𝐾Γ𝑇𝑆𝑁 (0, ®𝑦 |𝑡, ®𝑥)𝐾 Γ̄

]
. (7)

The first term of the right side corresponds to the disconnected diagram composed of the anomalous
propagators, while the second and third terms are the contributions from the normal propagators.
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Figure 1: 2-point correlation functions for the pion (red circles) and the rho meson (green squares) at
𝜇/𝑚0

𝜋 = 0.32 (left panel) and at 𝜇/𝑚0
𝜋 = 0.81 (right panel).

3. Simulation details

In our simulation, we set 𝛽 = 0.8 and 𝜅 = 0.159 on 324 lattices, corresponding to the ratio
𝑚0

𝜋/𝑚0
𝜌 ≈ 0.81 (𝑚0

𝜌: the rho meson mass at 𝜇 = 0), lattice spacing 𝑎 ≈ 0.16 fm, and the temperature
𝑇 ≈ 0.19𝑇𝑐 with the pseudo-critical temperature of the chiral phase transition 𝑇𝑐 assumed to be
𝑇𝑐 = 200 MeV [9]. In this setup, 𝑚0

𝜋 ≈ 738 MeV. We use 400 configurations, and statistical
uncertainties are estimated by the jackknife analysis at the bin size 40. We take periodic boundary
conditions in the spatial directions while anti-periodic boundary conditions in the time direction.
We use wall-type quark operators at the source and local quark operators at the sink.

According to Ref. [8], there is a phase transition between the hadronic and superfluid phases
around 𝜇/𝑚0

𝜋 = 0.5. In the present simulation, we take 𝑗 = 0 for sea quarks and 𝑗 = 0.001
for valence quarks in the range of 0 ≤ 𝜇/𝑚0

𝜋 ≤ 0.40, while we take 𝑗 = 0.02 for both sea and
valence quark for 𝜇/𝑚0

𝜋 > 0.40. The diquark source term in the action is added to break the U(1)𝐵
symmetry explicitly; by taking the 𝑗 → 0 limit we can compare numerical data with predictions
from several analytical studies. The extrapolation 𝑗 → 0 is left for future works.

In this paper, we show the results that have the disconnected diagrams subtracted out in Eq. (6)
and Eq. (7). We found that the contributions coming from the disconnected diagrams do not change
the mass spectrum drastically for almost all the hadrons in a small 𝜇 regime. The meson in 𝐼 = 0,
0+ channel is the exception, in which the disconnected diagrams give rise to large fluctuations since
this channel can be coupled with the QCD vacua. Further consideration of their contributions would
be required in the future.

4. Results

4.1 pion and rho meson (𝐼 = 1, 𝐽𝑃 = 0− and 𝐽𝑃 = 1− channels)

We first investigate the pion and rho meson spectrum, which are well-known from previous
works [5–7].

In Fig. 1, we show the typical plots of the 2-point correlation functions for the pion and rho
meson. Here we take 𝜇/𝑚0

𝜋 = 0.32 as a typical case of the hadronic phase in the left panel, and
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Figure 2: Pion (red circles) and rho meson (green squares) masses at each chemical potential 𝜇. Solid
and dashed errorbars correspond to the statistical errors and the statistical and systematic errors added in
quadrature, respectively. Black dashed line shows the results for the pion mass in the chiral perturbation
analysis [10, 11].

𝜇/𝑚0
𝜋 = 0.81 as a typical case of the superfluid phase in the right panel. At 𝜇/𝑚0

𝜋 = 0.32, both
signals are clear and the pion 2-point correlation function is always larger than the rho meson
at every timeslice. In fact, the inequality, 𝐶𝜋 (𝑡) ≥ 𝐶𝜌 (𝑡), is proven analytically at zero chemical
potential. Although the inequality requires the 𝛾5 hermiticity, our result indicates that the inequality
is valid even in a small 𝜇 regime. On the other hand, at 𝜇/𝑚0

𝜋 = 0.81, our results obviously break
the inequality and the slope of the pion 2-point function is much steeper than that of the rho meson,
which indicates that pion becomes heavier than the rho meson in the superfluid phase. We also
found that the pion 2-point function gets noisier at larger 𝜇. It suggests that a 2-body decay channel
is beginning to open up.

Now, we summarize the 𝜇 dependence of the pion and rho meson masses as shown in Fig. 2 1.
At 𝜇/𝑚0

𝜋 ≤ 0.32, both the pion and rho meson masses are independent of 𝜇, keeping the rho meson
heavier than the pion. For 𝜇/𝑚0

𝜋 ≥ 0.40, the pion mass starts to increase while the rho meson mass
slightly increases and then starts to decrease. Finally, the ordering of the pion and rho meson flips
around 𝜇/𝑚0

𝜋 = 0.5, which is the transition point between the hadronic phase and the superfluid
phase. For 𝜇/𝑚0

𝜋 > 0.5, the pion mass increases linearly while the rho meson mass decreases
monotonically.

The results in small-𝜇 regimes are consistent with Eq. (1). Here, 𝑄𝐵 = 0 for mesons, 𝑄𝐵 = 2
for diquarks, and 𝑄𝐵 = −2 for antidiquarks. Furthermore, the linear increase of the pion mass in
the superfluid phase is also almost consistent with the chiral model such as the chiral perturbation
theory (ChPT) [10, 11], which is shown as a black dashed line in the figure. We see slight deviations
between our data and the result of ChPT only around 𝜇/𝑚0

𝜋 = 0.5. It is due possibly to an effect
of the finite diquark source term. Furthermore, the decreasing behavior of the rho meson mass in a

1Here, the effective masses are estimated by fitting the 2-point functions using the cosh function. The solid error bars
denote the statistical errors. We also show the systematic error of the pion mass at 𝜇/𝑚0

𝜋 = 1.13 as a dashed error bar.
It comes from the fit range dependence. Only this data point has a sizable systematic error.
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Figure 3: Meson (orange circles) and diquark (magenta crosses) 2-point correlation functions in isospin
𝐼 = 0 and 0+ channel at 𝜇/𝑚0

𝜋 = 0.32 (left) and at 𝜇/𝑚0
𝜋 = 0.64 (right).

Figure 4: Meson (purple circles) and diquark (cyan crosses) 2-point correlation functions in isospin 𝐼 = 0
and 0− channel at 𝜇/𝑚0

𝜋 = 0.32 (left) and at 𝜇/𝑚0
𝜋 = 0.64 (right).

high-𝜇 regime has been predicted in the analytical studies for dense 3-color QCD [1, 2]. Our results
in the superfluid phase seem consistent with such arguments in some way or another.

4.2 Hadrons in 𝐼 = 0, 𝐽𝑃 = 0± channels

4.2.1 2-point functions

Figure 3 presents the 2-point functions of the meson and diquark in isospin 𝐼 = 0 and 𝐽𝑃 = 0+

channel at 𝜇/𝑚0
𝜋 = 0.32 and at 𝜇/𝑚0

𝜋 = 0.64. At 𝜇/𝑚0
𝜋 = 0.32 as a typical case of the hadronic

phase, the meson 2-point function is symmetric under time reversal, namely, 𝑡/𝑎 ↔ (𝑁𝑡 − 𝑡/𝑎),
while the diquark one is asymmetric and the slope is steeper in the forward direction than that in
the backward direction. On the other hand, at 𝜇/𝑚0

𝜋 = 0.64 as a typical case of the superfluid
phase, the signals of both 2-point functions are clear and the slopes are gradual, which indicates
that both meson and diquark masses decrease in the superfluid phase. Furthermore, the diquark
2-point function becomes symmetric in the superfluid phase.

The 2-point functions in 𝐼 = 0, 𝐽𝑃 = 0− channel are shown in Fig. 4. As to time reversibility,
they are similar to those in the 𝐼 = 0, 𝐽𝑃 = 0+ channel; the meson 2-point function is symmetric
and the diquark one is asymmetric at 𝜇/𝑚0

𝜋 = 0.32, while both are symmetric at 𝜇/𝑚0
𝜋 = 0.64.
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Figure 5: Hadron masses at each 𝜇 in 𝐼 = 0, 0+ channel (left) and 𝐼 = 0, 0− channel (right). Solid errorbars
correspond to the statistical errors, and dashed errorbars correspond to the statistical and systematic errors
added in quadrature. Black dashed line shows the results for the diquark and antidiquark masses in the 𝐼 = 0,
0+ channel in the chiral perturbation analysis [10, 11].

However, the diquark 2-point function has a steeper slope than the meson one at 𝜇/𝑚0
𝜋 = 0.32 in

𝐼 = 0, 𝐽𝑃 = 0− channel. Furthermore, in contrast to the 𝐼 = 0, 𝐽𝑃 = 0+ channel, the meson 2-point
function at 𝜇/𝑚0

𝜋 = 0.64 gets noisy compared with that at 𝜇/𝑚0
𝜋 = 0.32, and the slopes in early

timeslices (𝑡/𝑎 ≃ 4–7) and in late timeslices (𝑡/𝑎 ≃ 9–12) look different from each other. The
behavior suggests that there is a comparable contribution from the first-excited state.

4.2.2 Mass spectrum

Now, we extract the effective masses from the corresponding 2-point functions. If the 2-
point function is symmetric under 𝑡/𝑎 ↔ (𝑁𝑡 − 𝑡/𝑎) theoretically, as is the case with all the
2-point functions at 𝜇 = 0 and the meson 2-point functions in all 𝜇 regimes, then we fit it using
a single cosh function. As for the diquark (antidiquark) 2-point functions at 𝜇 ≠ 0, which are
asymmetric, we utilize a single-exponential function to fit each 2-point function in the backward
and forward directions separately and define the diquark and antidiquark masses by the fit results in
the backward and forward directions, respectively. Furthermore, for the 2-point functions that are
expected to have a large contribution from the first-excited state, we use the double-cosh function
𝐶0 cosh(𝑚0(𝑡 − 𝑇/2)) + 𝐶1 cosh(𝑚1(𝑡 − 𝑇/2)) in the fitting and pick up the ground-state masses.
We apply it to the 𝐼 = 0, 0+ meson at 𝜇/𝑚0

𝜋 = 1.13 and to the 𝐼 = 0, 0− meson at 𝜇/𝑚0
𝜋 = 0.64,

0.81, and 1.13.
The results for hadron masses in 𝐼 = 0, 0± channel at each 𝜇 are presented in Fig. 5 2. At zero

chemical potential, the masses of the diquark and antidiquark in 𝐼 = 0, 0+ channel are the same
as the pion mass, which is guaranteed by the unbroken part of the Pauli-Gursey symmetry. The
𝐼 = 0, 0− meson, which is associated with the eta meson in three-color QCD, also has the same
mass as that of the pion. The reason for the eta-pion degeneracy is that we neglect the disconnected
diagrams, which are associated with the 𝑈 (1)𝐴 anomaly. Compared with these hadrons, the 𝐼 = 0,
0+ meson and the 𝐼 = 0, 0− diquark/antidiquark are much heavier.

2For the 𝐼 = 0, 0+ antidiquark at 𝜇/𝑚0
𝜋 = 0.40–0.56 and the 𝐼 = 0, 0− antidiquark at 𝜇/𝑚0

𝜋 = 0.40, the results are
not presented because the effect of the anti-periodicity in the 2-point functions is too large to extract their masses.
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At 𝜇/𝑚0
𝜋 ≪ 1 in the hadronic phase, the hadron masses behave as Eq. (1) in each channel.

For 𝐼 = 0, 0+ channel, this is consistent with the results of ChPT [10, 11]. However, we see the
apparent discrepancy in the 𝐼 = 0, 0+ antidiquark at 𝜇/𝑚0

𝜋 = 0.32. Here, we take small 𝑡/𝑎 data
since the region of the forward propagation for the diquark 2-point function is narrow. The result
for the mass suffers from the excited states in such a 𝑡/𝑎 regime.

In the superfluid phase (𝜇/𝑚0
𝜋 ≥ 0.5), the three hadron masses in each 𝐼 = 0, 0± channel

are degenerate. It indicates the mixing among the three hadrons in the ground state due to the
spontaneous breaking of 𝑈 (1)𝐵 symmetry. In particular, the masses of the 𝐼 = 0, 0+ hadrons
are very small and steady against change in 𝜇, indicating that the 2-point functions couple to the
(pseudo) Nambu-Goldstone mode associated with the diquark condensation. In our understanding,
the mass suffers from the effect of the diquark source term in the action. It is expected to be massless
if we take the 𝑗 = 0 limit. For the 𝐼 = 0, 0− hadrons, the masses get small but larger than the 𝐼 = 0,
0+ hadron masses, and decrease when 𝜇 increases.

Such a mixing phenomenon between mesons and diquarks in the superfluid phase appears
also in the linear-sigma model based on the approximate 𝑆𝑈 (4) Pauli-Gursey symmetry with
the chiral and diquark mean fields [12]. Furthermore, the hadron spectrum in these channels is
almost consistent with our numerical results. These consistencies support our interpretation of the
numerical results, that is, the meson-diquark-antidiquark mixing occurs in the superfluid phase.

5. Summary and discussion

We study the hadron spectrum in 2-color QCD in a low-temperature and finite-density regime
where both the hadronic phase and the superfluid phase appear. To avoid the numerical instability,
we use the fermion action with the diquark source term. It induces the anomalous propagators,
which give rise to a quark to antiquark and an antiquark to quark change.

The pion and rho meson masses in our results are constant at small 𝜇, which is consistent
with the theoretical prediction that the hadron masses behave as Eq. (1) at small 𝜇. These masses
begin to change before the hadronic-superfluid phase transition. Accordingly, the spectral ordering
flips around the phase transition point; the pion mass increases linearly while the rho meson mass
monotonically decreases. The behavior is consistent with the previous lattice studies and with
several analytical predictions.

The hadrons masses in 𝐼 = 0, 𝐽𝑃 = 0± channels at small 𝜇 are consistent with Eq. (1) In
the superfluid phase, all the hadrons in each channel have almost the same mass. This indicates
that meson-diquark-antidiquark mixing happens due to the breaking of 𝑈 (1)𝐵 symmetry in the
superfluid phase, which is also seen in the linear sigma model based on the approximate 𝑆𝑈 (4)
Pauli-Gursey symmetry with the chiral and diquark mean fields.

In this work, we neglect the disconnected diagrams, which are directly related to the effect of the
𝑈 (1)𝐴 anomaly, which breaks the degeneracy of the spectrum of the chiral partner. Examination
of such contribution is of interest in that the magnitude of the anomaly effect determines the
asymptotic behavior of the eta meson mass at infinitely large 𝜇, as seen in the linear sigma
model [12]. Furthrmore, in this work, we use finite 𝑗 at large 𝜇. Taking the 𝑗 → 0 extrapolation is
necessary in order to obtain clean results in the superfluid phase, for example, the 𝐼 = 0, 0+ masses
that are expected to be zero in this limit. These corrections should be considered in the future.
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