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An important aspect in the study of quark gluon matter is represented by the computation of its transport
coefficients. Indeed, they contain important information about thermodynamics and the phase diagram of
QCD. Furthermore, they are used as input parameters in hydrodynamical simulations of heavy-ion collision
experiments. The electric conductivity is a transport coefficient which parameterizes the charge transport
phenomena. It is expected to play a central role in the dynamics of the Quark Gluon Plasma (QGP), since
electric and magnetic fields are generated in heavy-ion collisions. The computation of this quantity can
be done using the so-called Kubo formulas where spectral functions of electric current-current correlation
functions and conductivity are directly related. The spectral functions can be extracted from the correlators on
the lattice. The two quantities are related by an integral relation which has to be inverted to extract spectral
functions. This inversion can be done by using smearing techniques to look for approximate solutions. We
performed the study of the conductivity in two cases. On the one hand, we present the lattice QCD study of
the electromagnetic conductivity dependence on baryon density. A first discussion can be found in [1]. On
the other hand, we studied the electromagnetic conductivity in presence of strong magnetic fields, namely
eB = 4, 9 GeV . This gives an evidence of the CME.
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1. Introduction

Transport coefficients of quark-gluon matter contain important information about thermodynamics and
the phase diagram of quantum chromodynamics (QCD). Furthermore, they are used as input parameters in
hydrodynamical simulations of heavy-ion collision experiments. In particular, the electromagnetic conductivity
σel is a transport coefficient which parameterizes the charge transport phenomena. The electric and magnetic
fields generated in heavy-ion collisions can reach rather large values eB ∼ eE ∼ m2

π for a short period of
time [2]. For this reason, charge transport is expected to play an important role in the dynamics of the fireball
created by the colliding nuclei. Notice also that the quark-gluon plasma (QGP) electromagnetic conductivity
can be accessed in heavy-ion collision experiments through the dilepton emission rate [3].
The QGP electromagnetic conductivity was studied using different approaches: NJL-like models [4–9],
perturbative calculations [10–12], dynamical quasiparticle approach [13, 14], hadron resonance gasmodels [15–
17] and holographic QCD [18, 19]. In addition to phenomenological studies, first-principle results on this
observable were obtained within lattice simulation of QCD [20–25] (see also the review of lattice results [26]).
In general, transport coefficients of a medium can be extracted from the low-energy behaviour of appropriate
current-current spectral functions. Here, an inverse problem appears. Indeed, spectral functions are related
via a convolution relation to the corresponding correlation functions.
In this work, we present our lattice study of the conductivity of the quark-gluon plasma in different conditions
within real QCD, considering in particular the theory with Nf = 2 + 1 dynamical quarks at the physical point.
The study of the conductivity on the lattice consists of three main steps. The first one is the computation of
the current-current correlation functions on the lattice. Then, the extraction of the spectral function from the
correlators using inversion methods [27] and finally the computation of the values of the conductivity via the
so-called Kubo formulas. In this work, we present how the electromagnetic conductivity is influenced by non
zero baryon density, as already discussed in [1] and by the presence of strong magnetic fields.

2. Lattice setup

We consider a QCD with Nf = 2 + 1 flavours. The discretized partition function is

Z(T, µu,d,s) =
∫
DUe−SYM

∏
f=u,d,s

det
[
M f

st (U, µ f )

]1/4

where
SYM = −

β

3

∑
x,µ,ν

(
5
6

W1×1
x;µν −

1
12

W1×2
x;µν

)
(1)

is the Symanzik tree-level improved lattice gauge action [28], and (D f
st )nm is the stout improved rooted

staggered Dirac operator that we will define separately in the following paragraphs for the case at finite baryon
density and the case in presence of magnetic field. In Eq. (1), β is the inverse gauge coupling, W1×ns represent
the real part of the traces of the ordered products of the link variables placed respectively on the 1 × 1 and
1 × 2 rectangular closed paths, starting at the lattice point x and laying on the plane µν.

3. Euclidean correlators and conductivity

The relevant quantities that we compute on the Lattice are the current-current lattice Euclidean temporal
correlation function, namely

Ci j(τ) =
1
L3
s

〈Ji(τ)Jj(0)〉, (2)

where i and j are referred to the spatial dimensions, τ is the Euclidean time, Ls the spatial extension. In this
work, Ji(τ) is the i-th component of the conserved electromagnetic current. In the framework of staggered
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fermions it reads
Ji(τ) =

e
4

∑
f

qf

∑
®x

ηx;i
(
χ̄
f
xU(2)x,i χ

f
x+i + χ̄

f
x+iU

(2)†
x,i χ

f
x

)
, (3)

where e2 = 4π/(137.04) is the elementary charge, qf is the electric charge of the quarks, ®x = (τ, ®x), i = 1, 2, 3,
and χ̄

f
x and χ̄

f
x are the staggered fermion fields with flavour f = u, d, s. On the configurations of our

Monte-Carlo sample, we compute correlation functions (2) neglecting disconnected diagrams similarly to Ref.
[21–23]. The staggered fermion correlator (2) corresponds to two different operators for the even τ = 2n × a
and odd τ = (2n + 1) × a time slices, where a is the lattice spacing, while n is an integer that takes value from
0 to the half dimensionless temporal extension Nt/2 − 1, since the inverse temperature is βT = Nta. In the
Dirac spinor basis, Ci j(τ) reads

Ce, o
i j (τ) =

∑
®x

(
〈Ai(x)Aj(0)〉 − se, o〈Bi(x)Bj(0)〉

)
, (4)

where se, o = (−1)τ is the timeslice parity and

Ai = e
∑
f

qf ψ̄
f γiψ

f , Bi = e
∑
f

qf ψ̄
f γ5γ4γiψ

f ,

where ψ f is the f flavoured Dirac spinor. The operator Ai corresponds to the continuum electromagnetic
current, whereas Bi is a spurious contribution to be removed.
Now, let us recall that the current-current Euclidean correlators Ceo

ij , both for even and odd slices, are related
to the corresponding spectral functions ρe, oi j (ω) by

Ce, o
i j (τ) =

∫ ∞

0

dω
π

K(τ, ω)ρe, oi j (ω), (5)

where K(τ, ω) = coshω (τ−β/2)
sinhω β/2 . The crucial point, here, is that if we are able to extract the spectral densities

ρe, oi j (ω) from the lattice correlators, then we can compute the electromagnetic conductivity σi j using the
Kubo formulas

σi j

T
=

1
2T

lim
ω→0

1
ω

(
ρei j(ω) + ρ

o
i j(ω)

)
. (6)

The contribution from 〈Bi(τ)Bj(0)〉 cancels out in the sum ρei j + ρ
o
ij and, in the continuum limit, the

electromagnetic conductivity is reproduced. In the following paragraph, we discuss the inversion strategies
applied in our analysis to extract the spectral functions from the corresponding lattice correlation functions.

4. Inversion smearing methods

Given the correlation functions Ce, o
i j (τ), one needs to invert the integral equation (5) to obtain the spectral

functions ρe, oi j (ω), in order to find the conductivity using (6). Let us rewrite Eq. (5) as

C(τ) =

+∞∫
0

dω
π

ρ(ω)

f (ω)
K ′(τ, ω), (7)

where we redefined the basis functions as

K ′(τ, ω) =
coshω (τ − β/2)

sinhω β/2
f (ω)

in order to introduce the arbitrary function f (ω). We can make an estimate of the spectral function as

ρ̄(ω̄) = π f (ω̄)
τmax∑
τ=τmin

qi(ω̄)C(τi). (8)
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where qi are coefficients that have to be fixed. The advantage of the rearrangement in Eq. (7) is that we can
choose f (ω) = ω and ω̄ = 0, so that we can directly extract from the correlators the ratios ρe,oij (ω)/ω in the
limit ω→ 0. This is exactly what we need to compute the conductivity using Eq. (6). Thus, in our analysis
ω̄ = 0. The relation between the estimator ρ̄(ω̄) and the spectral function ρ(ω) is

ρ̄(ω̄) = f (ω̄)

∞∫
0

dω∆(ω̄, ω)
ρ(ω)

f (ω)
, (9)

where ∆(ω̄, ω) =
∑τmax
τ=τmin

q(ω̄, τ)K(ω, τ) is the resolution function. Notice that the calculation is hindered
by large ultraviolet (UV) contribution of ρ(ω). For the conductivity the UV contribution scales as ρ ∝ ω2

and the study carried out in Ref. [25] shows that it corresponds to ∼ 20 − 30 % of the total signal at ω̄ = 0.
One could subtract the UV contribution from the correlation function (4) (see Ref. [25] for details). However,
this approach leads to large uncertainties. In this work, we solve this issue by considering the change ∆C of
correlation functions at different values of the parameters of the analysis, instead of the simple correlation
functions C. We clarify this point in the following paragraphs when we enter in the details of the specific
considered physical situations.
To find the coefficients qi we applied a recently proposed modified version of the Backus-Gilbert method
[27]. Here, the quantities qi are fixed as the ones that minimize the deviation between the smearing function
∆(ω̄, ω) appearing in Eq. (9) and a reasonable target function. Then, the minimization is regularized by
means of a regularization parameter λ. This approach results to be more stable and it also allows us to have a
clearer estimate of the systematic uncertainty related to the final result. However, let us recall here that, in the
case of staggered fermions, one has two branches of lattice data: even and odd. So we apply separately the
approach to the two branches and then we sum them in Eq. (6). In this work, in some cases, we use lattices
that return correlation functions having also just three independent values of the Euclidean time (for lattices
with Nt = 12). Using these few independent terms, it is difficult to build the gaussian target function proposed
in [27]. For this reason, we choose the target function as

δ0(ω) = δ0(ω, ω̄ = 0) =
1

(σπ/2)2
ω

sinh (ω/σ)
. (10)

The advantage of using this function stems from the fact that at σ = 2 T it coincides with the thermal kernel
at τ = β/2, namely δ0(ω) ∼ ωK(β/2, ω) (see formula (7)). This implies that, at σ = 2 T , only one point is
needed to exactly reproduce δ0(ω). At σ , 2 T , more points are needed, but not as many as for the gaussian
target function in [27].
Let us now describe how we fixed the value of the σ parameter. We consider the relative deviation r without
regularization, namely λ = 0, as a function of the smearing parameter σ/T . Then, we impose the requirement
that the relative deviation at the peak position ω = ω̄ is smaller than 5%. The resulting intersection gives the
value of σ.
To fix the value of the λ parameter we study the behaviour of the output spectral function as a function of the
λ parameter. Then, we choose λ approximately in correspondence of the point, starting from larger values of
λ, at which the spectral function reaches a stabilization. This plateau has a lower limit fixed by the fact that
the uncertainties must be still reliable. Differently, the upper limit is fixed by the physical range of the quantity
we are studying. Indeed, in a real calculation, the resolution function has a peak of finite width of some T .
Thus, the estimator ρ̄(ω̄) is an average of the spectral function over such a region around ω̄. Note that we
can reliably reconstruct ρ(ω = 0) if the resolution function δ(ω̄ = 0, ω) is narrower than the characteristic
variation scale of ρ(ω). Correlation functions of the electromagnetic currents are well described by either the
ansatz combining the transport peak at small frequencies and UV contribution at large frequencies [22–24] or
by the AdS/CFT spectral function [24]. Thus, we have to take temperature interval such that the widths of
δ(ω̄ = 0, ω) are close to or smaller than the variation scale of ρ(ω) obtained in [22–24]. We fix λmax such
that the width is ∼ 4T . This choice allows us to obtain reliable results for the conductivity extracted from such
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spectral functions. Finally, after the determination of the λ parameter and the corresponding coefficients qi ,
one can obtain the estimate of the observable. The related systematic uncertainties are computed as proposed
in Ref. [27], while the statistical uncertainties are evaluated by using a bootstrap sampling.

5. Conductivity at finite baryon density

It is known that QGP created in heavy-ion collision experiments has nonzero baryon density. It is believed
to be rather small for LHC and RHIC experiments while FAIR and NICA are designed to generate large baryon
densities. One can expect that a non vanishing density leads to the appearance of additional fermion states in
QGP, which might play an important role in the charge transport phenomena. Thus, it is important to study
how a nonzero baryon density influences the electromagnetic conductivity of QGP. Several phenomenological
studies investigated transport properties in this regime [29–32]. Lattice QCD study where the electromagnetic
conductivity dependence on the baryon density was considered, are in general very difficult. Partially, this
is due to the notorious sign problem of lattice simulations at finite baryon density; indeed, in QCD-like
theories without the sign problem, the conductivity can be studied through lattice simulations at finite baryon
density [33].
Here, we conduct the lattice study within real QCD, based on [1], considering in particular the theory with
Nf = 2 + 1 dynamical quarks at the physical point. To overcome the sign problem, simulations are carried
out using an imaginary baryon chemical potential; then, the obtained results are analytically continued to
real values of the chemical potential. We consider chemical potentials µ f ( f = u, d, s), in a setup for which
µu = µd = µB/3, µs = 0; that does not reproduce the exact condition present in heavy ion collisions, which
corresponds to strangeness neutrality, but are nevertheless quite close to it. We adopt the standard exponentiated
implementation of the chemical potentials [34, 35] taking the staggered fermion matrix appearing in Eq. (1) as

M f
st (U, µ f )x,y = am f δx,y +

4∑
ν=1

ηx;ν

2
[
eaµ f δν,4U(2)x;νδx,y−ν̂

− e−aµ f δν,4U(2)†
x−ν̂;νδx,y+ν̂

]
, (11)

where ηx;ν = (−1)x1+..xν−1 are the staggered phases, and U(2)x;ν are two-times stout-smeared links, with isotropic
smearing parameter ρ = 0.15 [36]. We consider two temperature values, namely T = 200 and 250 MeV;
most simulations are carried out on a 12 × 483 lattice, with spacings a = 0.0820 fm and a = 0.0657 fm,
correspondingly. To study the cutoff dependence, we also consider a 10 × 483 lattice with a = 0.0988 fm and
a = 0.0788 fm. To avoid the sign problem, we carry out the simulations using an imaginary baryon chemical
potential, µB = iµI , with values µI/(3πT) = 0.000, 0.140, 0.200, 0.245 and 0.285 for all UV cutoffs and
lattice sizes.

We choose bare parameters in order to stay on a line of constant physics with physical quark masses. In
particular, we adopt the values reported in Refs. [37–39], either directly or by interpolation. We use up to
O(100) decorrelated gauge configurations for each simulation point. They are obtained using the Rational
Hybrid Monte-Carlo algorithm [40–42]. In Table 1 we provide a sketch of simulations parameters.
As mentioned above, the calculation is hindered by large ultraviolet (UV) contribution of ρ(ω). Thus, in this
case, instead of the correlation functions Ce, o

µI , we consider the differences ∆Ce, o = Ce, o
µI − Ce, o

µI=0. Since for
the chosen values of the lattice spacing the UV regime starts at ω0 ∼ 2GeV [25], we note that µI � ω for all
frequencies in the UV regime and for our values of the imaginary baryon chemical potential. Thus, one can
consider the UV spectral function independent of the imaginary baryon chemical potential and assume that
the differences ∆Ce, o do not contain significant UV artefacts. The results for ∆Ce, o also turn out to be more
accurate since the UV–estimation uncertainty is absent in this case.

To sum up, in our study first of all we measure the lattice correlation functions Ce, o
i j (τ) (4). Then, we

compute the differences ∆Ce, o
i j from which we extract the estimators ∆ρ̄e, oi j (ω̄)/ω̄ at ω̄ = 0 using the improved

BG inversion method. Finally, using Eq. (6), we calculate the electromagnetic conductivity ∆σ = σµI −σµI=0.
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a, fm Ls Nt T ,MeV mla msa µI/3πT

0.0988 48 10 200 0.00140 0.03940 0.0, 0.14, 0.20,
0.245, 0.285

0.0788 48 10 250 0.00112 0.03151 0.0, 0.14, 0.20,
0.245, 0.285

0.0820 48 12 200 0.00117 0.03287 0.0, 0.14, 0.20,
0.245, 0.285

0.0657 48 12 250 0.00092 0.02581 0.0, 0.14, 0.20,
0.245, 0.285

Table 1: Parameters used in the numerical simulations.

Figure 1: The Figures show the results of the change of the electromagnetic conductivity due to non-zero imaginary baryon
chemical potential ∆σ = σµI −σµI=0 as a function of µI/T normalized to TCem, obtained by the modified Backus-Gilbert
using the plateau technique. The calculations are carried out for T = 200MeV (left panel) and T = 250MeV (right
panel).

The variation of the electromagnetic conductivity due to a non-zero imaginary baryon chemical potential,
∆σ = σµI − σµI=0, normalized to TCem is shown as a function of µI in Fig. 1. The obtained results are well
described by the quadratic polynomial

∆σ

TCem
= −c(T)

(
µI
T

)2
, (12)

which, after analytical continuation to real chemical potentials, becomes

∆σ

TCem
= c(T)

(
µB
T

)2
. (13)

The values of the coefficients c(T) are shown in Table 2. Notice that the coefficients for all lattice parameters
are positive. Thus, we conclude that a non-zero real baryon chemical potential enhances the electromagnetic
conductivity. This can be understood as follows: a nonzero baryon density introduces additional fermion
states into the QGP, which participate in the charge transport, leading to a conductivity enhancement.

6. Conductivity in presence of strong magnetic field

The investigation of QCD properties in a magnetic background field has been the subject of various
studies in the last few years, see, e.g., Refs. [43–45] for recent reviews. Part of the interest is directly related
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a, fm T ,MeV c(T)
0.0988 200 0.0125(11)
0.0788 250 0.0095(6)
0.0820 200 0.0109(17)
0.0657 250 0.0165(5)

Table 2: The parameter c(T) in the quadratic fit obtained within modified Backus-Gilbert method.

to phenomenology, since strong background fields are expected in non-central heavy ion collisions. A
central aspect for the understanding of these collisions is the Chiral Magnetic Effect (CME), a well known
anomaly-based phenomenon which can be realized in different systems with relativistic fermionic degrees
of freedom [46–48]. The CME is the generation of a non-dissipative electric current along the external
magnetic field in systems with a net imbalance between the number of right-handed and left-handed fermions
or nonzero chiral density. The nonzero chiral density should be generated in order to experimentally observe
the CME. In heavy-ion experiments the chiral density might be generated due to sphaleron transitions in the
quark-gluon plasma (QGP), namely the deconfined phase of QCD. A possible way to generate the chiral
density and to observe the CME is to apply parallel electric and magnetic fields. In this case the chiral
anomaly generates the imbalance between the right-handed and left-handed fermions which leads to the CME
which manifests itself through the rise of electric conductivity along the magnetic field. This CME current
has already been observed experimentally in condensed matter systems [49–51]. Similarly to condensed
matter systems, the latter mechanism can be realized in heavy-ion experiments, where colliding ions create
hot QGP with deconfined relativistic quarks. In addition, in non-central collisions the QGP is affected by
huge magnetic fields generated by the motion of colliding heavy ions [52]. As a result the electromagnetic
(e.m.) conductivity of QGP along the magnetic field might be significantly enhanced. A first lattice study of
the e.m. conductivity of QGP in external magnetic field with Nf = 2 + 1 dynamical staggered fermions has
been performed in [25].
Here, our analysis is carried out on the same configurations used by authors of [53] to study QCD phase
diagram in the T − eB plane. Their results suggest a crossover transition in correspondence of eB = 4GeV2

at a temperature ∼ 98MeV and a first order transition in correspondence of eB = 9GeV2 at a temperature
∼ 63MeV . Since the magnetic field is directed along the z-direction, the symmetry of the space is broken.
Thus, we study separately the parallel and the perpendicular component of the conductivity. As described
in [25], the total conductivity of the system is the sum of the Ohmic and the CME conductivities. In the
perpendicular direction the CME component is zero, since there is no magnetic field. It remains only the
Ohmic component which gives the magnetoresistance effect. Differently, in the parallel direction the CME
component is a raising function of the magnetic field. Thus, the observation of a parallel conductivity raising
with the magnetic field can be a manifestation of the CME. The extraction of the conductivity is performed
using the improved Backus-Gilbert method with the procedure described in the previous Sections. Also
in this case, we consider the difference ∆Ce,o = CeB − CeB=0. In Figure 2 we show the results for the
perpendicular conductivity normalized to TCem, in the only case in which we obtain reliable results, as a
function of the temperature. Unfortunately our data for other parameters are affected by large errors (∼ 100%),
that together with the fact that the signal is small make the method unstable, making impossible the λ-tuning
in the physical range and producing unreliable results. The magnetic field has the clear effect of decreasing
the conductivity. Indeed, the change of the conductivity ∆σ = ∆σeB − ∆σeB=0 is negative. We interpret this
as the magnetoresistance effect. For higher temperatures this difference becomes smaller in modulus. This is
reasonably due to the increased thermal activity. Around T = 98MeV we have the transition. However in this
region the large uncertainties forbid to make conclusions.
For the parallel case, always normalized to TCem, the signal is stronger and the errors are in general smaller
(∼ 10%). Consequently, the modified BG method is more stable within the physical range. It is clearly
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Figure 2: Perpendicular electromagnetic conductivity due to the magnetic field as a function of the temperatureT = 1/Nta
for eB = 4GeV2 and a = 0.0572 f m.

Figure 3: Parallel electromagnetic conductivity due to the magnetic field as a function of T for different magnetic fields
and lattice spacings. Left : eB = 4 GeV2. Right : eB = 9 GeV2.

observed an important increase of the conductivity for both the values of the magnetic field. This is the
manifestation of the CME in QGP on the lattice. In the case of eB = 9GeV2, all the considered temperatures
are larger than the deconfinement one. Thus, all the points are in the deconfined region of the phase diagram.
Differently, as in the perpendicular case, for eB = 4GeV2 we have points also around the deconfinement point.
However, also in this case the errors forbid us to draw any reliable conclusion. Further investigations are
needed.

7. Conclusion and Outlook

The conductivity of a physical system is directly related to the spectral function of the current-current
electromagnetic correlation functions via the Kubo formulas. The extraction of the conductivity from the
euclidean correlation functions is an inverse problem that we solve using the modified BG approach [27]. We
considered the study of the conductivity of the QGP in two cases relevant for the phenomenology of the heavy
ion collisions. In the first case, we analysed the effect of a non-zero baryon density on the conductivity. Our
results indicate that the baryon density has a clear effect on the conductivity, namely it enhances its magnitude.
In the second application, we considered the presence of large magnetic fields, namely eB = {4, 9} GeV2,
directed along the z axis. Using the same techniques, we studied separately the parallel and the perpendicular
conductivity with respect the direction of the magnetic field. In the case of the perpendicular component, we
observed a decreasing of the conductivity and then a manifestation of the magnetoresistance. Differently, the

8
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parallel component increases with the magnetic field. We interpret this as a manifestation of the CME.
Numerous questions are still open and claim for further investigations. From a methodological point of view,
we plan to improve the approaches that we used to solve inverse problems. In this work we used the modified
Backus-Gilbert approach proposed in [27]. This method is surely more stable than the original one. However
many aspects remain to be clarified. First of all, there should be a better clarification of the relation between
the two terms entering in the expression of the functional, defined in Eq (26) of [27], that we minimize to
extract the coefficients. Even if they have the same dimensions, the comparison of the two functionals still
remains not completely meaningful from a mathematical point of view. This problem is directly related to the
tuning of the λ parameter. This regularization parameter is not fixed by the method and the proposal, made
in [27], of fixing it as the maximum value assumed by the function W(λ) remains not effective, since this
value often corresponds to a point which is far from the stabilization region of the output as a function of λ.
Looking at a plateau of the output quantity as a function of λ seems to be more reasonable. However, the
choice of λ still remains too subjective, since we don’t have a clear rule that can be applied to fix it. This
implies that the fixing of its value is case dependent. For this reason, it’s not possible for the moment to
automatize the analysis making it meaningful and efficient in every situation. Another important point to
be improved is the evaluation of the systematic uncertainties. The recent modified BG approach [27] surely
improved its definition making its evaluation more clear. However, it is still not a definition that can be
considered definitive. A further investigation is necessary.
From a physical point of view, the present work can be extended in various directions, which however require
considerable additional computational efforts. For both physical applications, we would like to explore a
broader range of lattice spacing, especially finer ones, in order to better assess the impact of using different
resolution functions and also to perform a continuum limit extrapolation. Including simulations with more
time slices would allow us to perform the inversion using narrower resolution functions. This would be
crucial to obtain an observable which better approximate the physical quantity. In the case of the conductivity
in presence of baryon density, we plan to explore a wider temperature range. Together with a reduction of
statistical and systematic uncertainties, it could permit to make a more definite assessment on theT dependence
of the coefficients c(T). We also plan to refine the setup of quark chemical potentials, in order to be closer
to the phenomenological conditions reproduced in heavy ion collisions. In the case of the conductivity in
presence of strong magnetic field, the study of the temperature dependence of the conductivity in the parallel
direction has to be better investigated. Indeed, especially for large values of the temperature, the conductivities
in the parallel direction seem to manifest a common behaviour. We plan to study this dependence and
investigate which could be its physical origin. Finally, it would also be very interesting to investigate the
conductivity for eB = 9 GeV2 around the deconfinement temperature where in [53] the authors guess a first
order transition that could be observed as a jump of the conductivity.
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