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We calculate Fourier coefficients of the net-baryon number as a function of a purely imaginary
chemical potential. The asymptotic behavior of these coefficients is governed by the singularity
structure of the QCD partition function and thus encodes information on phase transitions. For
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we use a novel Filon-type quadrature, designed for highly oscillatory integrals. We find sensitivity
to chiral scaling in a narrow temperature interval below the Roberge-Weiss transition temperature.
Scaling fits yield reasonable values for the position of the Lee-Yang edge singularity in the complex
chemical potential plane. Our lattice data has been obtained from simulations with (2+1)-flavors
of highly improved staggered quarks (HISQ) at imaginary chemical potential on #g = 4, 6 and 8
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1. Introduction

A detailed calculation of the QCD phase diagram at nonzero temperature and density from first
principles is an unsolved open issue. Unfortunately, lattice QCD calculations are hindered by the
infamous sign problem as soon as a non-vanishing chemical potential ` > 0 is introduced. In order
to alleviate or circumvent the sign problem, many numerical methods have been developed, which
include the Taylor expansion about ` = 0 as well as calculations at purely imaginary chemical
potential ` = 8`� , combined with an analytic continuation to real ` values. Since the QCD
partition function is periodic in `� /) ≡ ˆ̀� [1], with periodicity 2c/#2 , where #2 denotes the
number of colors, it is quite natural to analyze data that is obtained from lattice QCD calculations
with imaginary chemical potential in terms of a Fourier expansion. In particular, the Fourier
decomposition of the net baryon number density,

j�1 (), ˆ̀�) =
=� (), ˆ̀�)

)3 =
1
+)3

m

ˆ̀�
ln /�� (), ˆ̀�), (1)

where /�� (), ˆ̀�) is the grand canonical partition function1, ˆ̀� = `�/) is the reduced baryon
chemical potential, and ) the temperature, is straightforwardly accessible from lattice QCD data
and has been the starting point of many recent studies [2–7]. As j�1 exhibits the same periodicity
as the partition function and in addition is an odd function of `�

�
, we can expand Imj�1 as a Fourier

sine series

Re[j�1 (), 8 ˆ̀��)] = 0, Im[j�1 (), 8 ˆ̀��)] =
∞∑
:=1

1: ()) sin
(
: ˆ̀��

)
. (2)

Note that the real part of j�1 vanishes identically at ˆ̀� = 8 ˆ̀�
�
. The set of coefficients {1: ())}∞:=1

encode – up to an unimportant integration constant – the complete information on the QCD partition
function and thus on the thermodynamic properties ofQCDmatter in the region of the phase diagram
where the series, Eq. (2), converges. This is similar to the set of Taylor expansion coefficients of
the dimensionless pressure {22: ())}∞:=0, defined as

?(), ˆ̀�)
)4 =

1
+)3 ln /�� (), ˆ̀�) =

∞∑
:=0

22: ()) ˆ̀2:
� . (3)

The calculation of the coefficients 22: ()) is numerically very demanding and currently only 22: ())
for : ≤ 4 are known from direct calculations at `� = 0. Moreover, statistical and systematical
errors for 26()) and 28()) are still very large, for recent results see [8]. It might thus be tempting to
verify or even complement the information from the known Taylor coefficients by a calculation of
the first few Fourier coefficients 1: ()). Unfortunately, the calculation of the coefficients 1: ()) is
equally difficult. However, just as the Taylor coefficients have a physical interpretation as cumulants
of the net baryon charge �, the coefficients 1: ()) bear some physical meaning as well. The Fourier
expansion can formally be seen as a fugacity expansion. The set of available {1: ())} can thus be
used to determine the canonical partition functions /� (),+, #) [6, 7]. For the same reason the
Fourier expansion of the net baryon number density can be understood as a relativistic extension
of Mayer’s cluster expansion in fugacities [3]. In that spirit, the first coefficient 11()) is given by

1The dependence on the volume V is suppressed for simplicity.
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the partial pressure of the (non interacting) |�| = 1 sector, whereas 12()) parametrizes the leading
order of the baryon-baryon interaction. Based on the cluster expansion, the authors of Ref. [3]
have introduced a model (CEM) that can predict the coefficients {1: ())}∞:=2, based on the first two
coefficients 11()) and 12()). While this model verifies lattice results for the coefficients 13())
and 14()), it exhibits an exponential decay of 1: ()) for : → ∞ at fixed ) and thus does not
incorporate critical behavior. The asymptotic behavior of the model was adjusted to a power-law
decay in Ref. [4] (RFM), without spoiling the agreement with the lattice data. A more thorough
investigation of the asymptotic behavior of the {1: ())} in terms of the universal $ (4)-critical
scaling was performed in Ref. [5].

We are aiming at an analysis of the analytic structure of the QCD phase diagram, by means
of Lee-Yang zeros [9]. Zeros of the partition function will manifest as poles of the baryon number
density j�1 ()) in the complex ˆ̀� plane. A new method for the analytic continuation of j�1 ())
was introduced in Ref. [10] and is based on a multi-point Padé analysis. Since this method yields
a rational function approximation to the lattice data, it is straightforward to determine poles of the
observable in the complex `� plane. The closest pole might be associated with the Lee-Yang edge
singularity in QCD, which exhibits a well defined universal scaling and can be used to determine
various non-universal parameters, including the location of the critical point. Recent results on
Lee-Yang edge singularities and their scaling have been presented on this conference [11, 12]. The
verification of this method has been demonstrated by considering the universal scaling in the vicinity
of the Roberge-Weiss transition in QCD [10, 12, 13]. Here we will introduce a new method for the
numerical calculation of the Fourier coefficients {1: ())} and verify expected signals on universal
scaling in their large : behavior.

2. Determination of the Fourier coefficients

In many applications the Fourier coefficients are calculated by the conventional Discrete-
Fourier-Transform (DFT) or the popular Fast-Fourier-Transformation (FFT) algorithms. However,
as our input data stems from lattice QCD calculations and we are interested in the large : behavior
of {1: ())}, these algorithms have two crucial drawbacks for our purpose. Firstly, the number of
detectable frequencies is directly related to the sampling rate of the function. However, lattice QCD
calculations are expensive and we want to keep the number of sampling points # low. Secondly,
the numerical (root-mean-square) error of the DFT and FFT algorithm increases at least as ∼ #1/2

[14]. It thus seems advantageous to first perform a numerical interpolation of the lattice data
before calculating the Fourier coefficients. Furthermore, it is obvious that the calculation of 1: ())
demands solving a highly oscillatory integral, we have

1: ()) =
2
c

c∫
0

Im
[
j�1

(
), 8 ˆ̀��

)]
sin

(
: ˆ̀��

)
d ˆ̀�� . (4)

A popular numerical method for oscillatory integrals is the Filon-type quadrature, which simply
makes use of the interpolating polynomial for the non oscillatory part of the integrand (here
Im[j�1 (), 8 ˆ̀�

�
)]), whereas the oscillator (here sin

(
: ˆ̀�

�

)
) is treated analytically. This method has

the advantage that it is asymptotic in the sense that its error decreases with increasing frequency : .
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Figure 1: Comparison of the Hermite interpolation of the net baryon number density Im[j�1 (), 8 ˆ̀�
�
)] as

function of `�
�
with a [11/8] rational approximation. The lattice data is obtained from a calculation on

a 363 × 6 lattice at ) = 190 MeV using SIMULATeQCD [16]. The inlay on the left shows the second
baryon number cumulant Re[j�2 (), 8 ˆ̀�

�
)], together with the first derivative of the rational approximation of

Im[j�1 (), 8 ˆ̀�
�
)]. The figure on the right is a zoom into the peak region.

In Ref. [15] a Filon-type quadrature has been constructed which uses in addition to the interpolating
data also derivatives, i.e. the interpolating polynomial is taken to be a piece-wise polynomial,
matching values and derivatives to order B (Hermite interpolation) at the boundaries. The asymptotic
analysis performed in [15] shows that for this method, and a general oscillator of the form 48l6 (G) ,
the error decreases as O(l−B−2).

In Fig. 1 we show the 2=3 order Hermite interpolation to Im[j�1 (), 8 ˆ̀�
�
)], which continuously

matches j�1 , j
�
2 and j�3 . The green error band is obtained by assuming independent, normally

distributed errors at the simulation points and bootstrapping. For comparison we show a [11/8]
rational polynomial obtained with the multi-point Padé method [10]. We see that both methods
always agree within errors, even in the peak region where the differences are most pronounced.
Once we have an analytic expression for an interpolating function at hand, it is easy to calculate the
integral Eq. (4) analytically. In particular, for the Hermite interpolation we can split the integration
over the interval [0, c] to a sum over the intervals defined by the # data points. We have

1: ()) =
#−1∑
9=1

ˆ̀ ( 9+1)
�∫

ˆ̀ ( 9)
�

? 9 (G) sin(:G) dG, with 0 = ˆ̀1
� < ˆ̀2

� · · · < ˆ̀#� = c (5)

denoting the # locations of the data points and ? 9 (G) the interpolating polynomial of Im[j�1 (), 8G)]
for G ∈ [ ˆ̀ ( 9)

�
, ˆ̀ ( 9+1)
�
]. The results of the analytic integration for both types of interpolations are

shown in Fig. 2. The left (right) panel shows the results for ) = 190 () = 180) MeV. Error bars for
the Hermite interpolation are again obtained from bootstrapping. We find that both interpolations
yield consistent results at least up to frequency : . 10.
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Figure 2: Preliminary calculation of Fourier coefficients 1: ()) of the net baryon number density Im[j�1 ]
as a function of the frequency : obtained from an analytic integration based on two different interpolating
functions (Hermite and rational). The left (right) panel shows results for ) = 190 () = 180) MeV. The
normalizing factor is : (−1):+1 (left) and :2 (−1):+1 (right). The calculation is based on lattice data of j�1 ,
j�2 and j�3 from 363 × 6 lattices using SIMULATeQCD [16]. A Fit to ansatz Eq. (7) to the data at ) = 180
MeV is also shown.

3. Universal scaling

Finally we discuss the expected asymptotic behavior of the Fourier coefficients 1: ()) in the
vicinity of a phase transition [5]. For$ (#) and / (2) symmetric spin models in 3d, it is well known
that the order parameter " ∼ m ln / (), ℎ)/mℎ, where ℎ is the symmetry breaking field, exhibits
branch-cuts in the complex ℎ-plane. The position of the branch-cut singularity is identical to the
Lee-yang edge (LYE) singularity, defined as the point where the linear density of the Lee-Yang
zeros diverges in the continuum limit. For the analysis here, we estimate the leading singular
behavior of the net baryon number density j�1 . This is particularly easy in case of the Roberge-
Weiss transition, where we find Im[j�1 ] ∼ " and ℎ ∼ `�

�
. For fixed ) = )', we thus assume

Im[j�1 ] ∼ (c − ˆ̀�
�
)1/X , where X refers to a a critical exponent of the 3d Z(2) universality class. For

the Fourier coefficients one thus obtains

1: ∼
c∫

0

d ˆ̀�� (c − ˆ̀��)1/X sin
(
: ˆ̀��

)
∼ (−1):+1

:1+1/X . (6)

The analysis is similar but more involved in the case of the chiral O(4) transition in presence of an
explicit symmetry breaking quark mass (crossover). In essence one finds [5]

1: ∼
4−: ˆ̀'

!.�

:2−U

(
sin

(
: ˆ̀�!.� − Uc/2

)
+ '± sin

(
: ˆ̀�!.� + Uc/2

))
, (7)

for )24? < ) < )', . Here )24? denotes the temperature of the QCD critical point, the branch-cut
singularity is located at ˆ̀!.� = ˆ̀'

!.�
+ 8 ˆ̀�

!.�
, and U ≈ −0.21 and '± ≈ 1.85 denote universal

quantities from the O(4) universality class. Hence, the behavior resembles a damped oscillation
were the exponential suppression relates to the real part of the LYE and the period of the oscillation
to the imaginary part of the LYE.
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In Fig. 2 we show examples for both of these scenarios. However, a clear oscillatory behavior,
which indicates sensitivity to the chiral O(4) transition could only be found for two of our temper-
atures, ) = 180 and ) = 185 MeV. For ) < 185 MeV, the suppression due to the real part is so
large that the oscillations are hidden in the noise. Fits to the asymptotic behavior of 1: ()), for
) = 180 and ) = 185 MeV with ansatz Eq. (7) yield locations for the LYE which are consistent with
results from the poles of the multi-point Padé [12]. In fact, the real parts are in good agreement, the
imaginary parts come out slightly lower. The fit shown in Fig. 2 yields ˆ̀!.� = 0.97(6) +3.123(3)8.

4. Summary, conclusion and outlook

We have presented a preliminary calculation of Fourier coefficients {1: ())} of the net baryon
number Im[j�1 (), 8 ˆ̀�

�
)]. The calculation is based on lattice data from the Bielefeld-Parma collabo-

ration [12] and uses a novel Filon-type quadrature. With this method we were able to obtain Fourier
coefficients for frequencies of : . 10. Through the asymptotic behavior of these coefficients one
might identify branch-cut singularities in the complex chemical potential plane. However, sensi-
tivity to the chiral O(4) transition was only found in a narrow temperature interval ) ∈ [180, 185]
MeV. For temperatures below ) = 180 MeV, the exponential suppression with is associated with
the real part of the LYE seems too strong. To alleviate this problem in future calculation we might
improve the numerical quadrature further by investigate adaptive Filon-type methods and go to
lighter than physical quark masses. The latter will reduce the real part of the LYE and thus lift the
exponential suppression.
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