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1. Introduction

QCD undergoes a phase transition from hadronic degrees of freedom at low temperature to
the deconfined quarks and gluons at high-temperature [1, 2]. At zero density, this transition is
a crossover with the transition being continuous. A lattice analysis marks this pseudo-critical
temperature at 𝑇pc = 156.5 ± 1.5 MeV [2]. Upon introducing non-zero density, this transition is
expected to approach a second-order critical point beyond which a first-order transition marks the
phase transition. The location of this critical point is still elusive. To locate this critical point it
is necessary to understand the behavior of QCD at finite density and temperature. However, this
becomes difficult for lattice simulations because of the complex fermion determinant at a finite
chemical potential. This complex determinant poses a challenge in simulating the system on the
lattice because of an oscillating weight inside the partition function integral. Various numerical
methods are used to resolve this challenge for small chemical potential [3]. In this work, the
required observables are expanded in the Taylor series of the chemical potential and then calculated
on lattices generated at zero chemical potential . This gives their response to the chemical potential
as a series expansion.

The nature of hadronic excitations has phenomenological importance for understanding the
interaction between the quarks and gluons. We work with spatial correlation functions of mesonic
operators to obtain the mesonic excitations. These spatial correlators, also called screening cor-
relators, are obtained by propagating a quark and anti-quark in the spatial direction. They decay
exponentially at a large distance and the decay constant is called the screening mass and is the
inverse of the screening length. On the approach to the critical point, this screening length diverges
as the long-distance correlation becomes significant requiring the screening mass to vanish at the
critical point.

There has been a previous study to calculate the corrections to the screening mass at finite
density previously [4] using the Taylor expansion. Our work extends that study by allowing the
screening mass to take complex values. The motivation for this consideration is the free theory
analytical expression for the screening correlator with an oscillatory behavior suggesting a complex
screening mass [5]. The analysis carried out in this paper focuses only on the pseudoscalar channel
meson for the isoscalar chemical potential 𝜇𝑆 where

𝜇𝑆 = 𝜇𝑢 = 𝜇𝑑 . (1)

with 𝑢 and 𝑑 representing the up and down quarks.

2. Screening correlator and screening mass

On lattice, mesonic correlation functions are two-point functions represented by

𝐶 (𝑛, 𝜇𝑖 , 𝜇 𝑗) =
〈
𝑂Γ (𝑛)�̄�Γ (0)

〉
= ⟨𝐺 (𝑛, 𝜇𝑖 , 𝜇 𝑗)⟩
=

〈
Tr

[
𝑃(𝜇𝑖)𝑛,0Γ𝑃(𝜇 𝑗)0,𝑛Γ†]〉 (2)

where 𝑂 is the meson operator given by 𝑂 = �̄�𝑖Γ𝜓 𝑗 with 𝑖, 𝑗 corresponding to the flavor indices
of the quark field 𝜓, Γ is the Dirac spin matrix corresponding to the spin of the meson, 𝐺 (𝑛) is
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the meson propagator propagating from the origin to Euclidean space-time site 𝑛 on the lattice and
𝑃(𝜇𝑖)𝑛,0 is the quark propagator which is the inverse of the Dirac operator M(𝜇𝑖)𝑛,0

𝑃(𝜇𝑖)𝑛0 = M−1(𝜇𝑖)𝑛0 (3)

Using the modified 𝛾5−hermiticity property of the finite 𝜇 lattice Dirac operator M, i.e.
M(𝜇𝑖)0𝑛 = 𝛾5M(−𝜇𝑖)†𝑛0𝛾5, we can obtain the conjugation property of the meson propagator

𝐺 (𝑛, 𝜇𝑖 , 𝜇 𝑗) = Tr
[
𝑃(𝜇𝑖)𝑛0Γ𝛾5𝑃(−𝜇 𝑗)†𝑛0𝛾5Γ

†
]

(4)

𝐺 (𝑛, 𝜇𝑖 , 𝜇 𝑗)∗ = Tr
[
Γ𝛾5𝑃(−𝜇 𝑗)𝑛0𝛾5Γ

†𝑃(𝜇𝑖)†𝑛0

]
= Tr

[
𝛾5𝑃(−𝜇𝑖)0𝑛𝛾5Γ𝑃(𝜇 𝑗)†0𝑛Γ

†
]

= Tr
[
𝑃(−𝜇𝑖)0𝑛Γ𝛾5𝑃(𝜇 𝑗)†0𝑛𝛾5Γ

†
]

=⇒ 𝐺 (𝑛, 𝜇𝑖 , 𝜇 𝑗)∗ = 𝐺 (𝑛,−𝜇𝑖 ,−𝜇 𝑗) (5)

At zero temperature, the asymptotic large Euclidean time behavior of the correlator yields the
ground state excitation. At finite temperatures, the temporal extent of the lattice is constrained by
the temperature of the system, 𝑁𝜏 = 1/𝑇 . However, there are no such constraints in the spatial
directions making it easy to analyze the screening correlator at large distances. These screening
correlators are obtained by summing over the 𝑥, 𝑦, and 𝑡 directions

𝐶 (𝑛𝑧 , 𝜇𝑖 , 𝜇 𝑗) =
∑︁
𝑥,𝑦,𝑡

⟨𝐺 (𝑛, 𝜇𝑖 , 𝜇 𝑗)⟩

=
∑︁
𝑥,𝑦,𝑡

〈
Tr

[
𝑃(𝜇𝑖)𝑛,0Γ𝑃(𝜇 𝑗)0,𝑛Γ†]〉 (6)

For 𝜇 = 0, these correlators decay exponentially and for the periodic boundary condition of
lattice, we get

𝐶 (𝑛𝑧) =
∑︁
𝑖

𝐴′
𝑖

(
𝑒
−𝑀𝑖

(
𝑛𝑧− 𝑁𝜎

2

)
+ 𝑒

𝑀𝑖

(
𝑛𝑧− 𝑁𝜎

2

) )
=

∑︁
𝑖

𝐴𝑖 cosh
[
𝑀𝑖

(
𝑛𝑧 −

𝑁𝜎

2

)]
(7)

where 𝑖 is the sum over excitation states, 𝑀 is the screening mass in lattice units and 𝑁𝜎 is the
spatial extent of the lattice.

The staggered quarks have four spin and four taste indices giving sixteen mesons for each
meson channel specified by Γ = Γ𝐷 × Γ𝑇 with Γ𝐷 and Γ𝑇 being the Dirac Gamma matrices for
spin and taste structures, respectively. We will limit our analysis only to local meson operators with
Γ𝐷 = Γ𝑇 = Γ. With this, the local meson operators reduce to a product of phase factor 𝜙(𝑛) and
bilinear of staggered quarks 𝜒(𝑛), 𝑀 (𝑛) = 𝜙(𝑛) �̄�𝑖 (𝑛)𝜒 𝑗 (𝑛)[6]. For a constant separation between
the source and the sink for the staggered correlator, the contribution from two sets of mesons with
the same spin but with opposite parities are summed which are given by

𝐶 (𝑛𝑧) =
∑︁
𝑖

𝐴
(−)
𝑖

cosh
[
𝑀

(−)
𝑖

(
𝑛𝑧 −

𝑁𝜎

2

)]
− (−1)𝑛𝑧 𝐴(+)

𝑖
cosh

[
𝑀

(+)
𝑖

(
𝑛𝑧 −

𝑁𝜎

2

)]
(8)
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The local meson operator for the pseudoscalar channel is given by Γ (−) = 𝛾5 and Γ (+) = 𝛾3
corresponding to 𝜙(𝑛) = 1 [7]. The oscillating (+) channel for pseudoscalar meson is conserved
which doesn’t excite any states from the vacuum [6] and thus has contribution only from the
non-oscillating (−) channel.

3. Isoscalar chemical potential response for the free theory correlator

For finite 𝜇, analytical expression exists only for the free theory case [5]. When simplified for
isoscalar chemical potential, the free theory correlator equation becomes

𝐶 (𝑧, 𝜇𝑆) =
3𝑇2

2𝑧
𝑒−2𝜋𝑇𝑧

[(
1 + 1

2𝜋𝑇𝑧

)
cos(2𝜇𝑆𝑧) +

𝜇𝑆

𝜋𝑇
sin(2𝜇𝑆𝑧)

]
+ O(𝑒−4𝜋𝑇𝑧)

=
3𝑇2

2𝑧
Re

[
𝑒−2𝜋𝑇𝑧+𝑖 2𝜇𝑆 𝑧

((
1 + 1

2𝜋𝑇𝑧

)
− 𝑖

𝜇𝑆

𝜋𝑇

)]
+ O(𝑒−4𝜋𝑇𝑧) (9)

While the above correlator itself is real, it has periodic oscillations due to the screening mass and
the amplitude having a complex value given by

𝑀
𝑓 𝑟𝑒𝑒
𝑠𝑐𝑟 = 2𝜋𝑇 + 𝑖 2𝜇𝑆 (10)

𝐴 𝑓 𝑟𝑒𝑒 =
3𝑇2

2𝑧

((
1 + 1

2𝜋𝑇𝑧

)
− 𝑖

𝜇𝑆

𝜋𝑇

)
(11)

The imaginary part of the screening mass and amplitude depend linearly on the chemical potential
while the real part is independent of the chemical potential.

To the leading term, in the limit 𝜇𝑆 → 0, we get

𝐶 (𝑧, 0) = 3𝑇2

2𝑧
𝑒−2𝜋𝑇𝑧

(
1 + 1

2𝜋𝑇𝑧

)
(12)

which is the expected exponential fall-off. To observe the response of the correlator around 𝜇𝑆 = 0,
derivatives of correlators are obtained. Taking the derivative of the (9) with the isoscalar chemical
potential, the odd derivatives vanish. The first two non-zero derivatives at 𝜇𝑆 = 0 are

𝐶′′(𝑧) = −6𝑇2𝑒−2𝜋𝑧𝑇
(
𝑧

(
1 + 1

2𝜋𝑧𝑇

)
− 1
𝜋𝑇

)
(13)

𝐶′′′′(𝑧) = 12𝑧2𝑇2𝑒−2𝜋𝑧𝑇
(
2𝑧

(
1 + 1

2𝜋𝑧𝑇

)
− 4
𝜋𝑇

)
(14)

To get rid of the contribution of the exponential decay, we define Γ and Σ by dividing the above
equations by the free theory correlator at 𝜇𝑆 = 0

Γ𝐹𝑟𝑒𝑒 (𝑧) ≡
𝐶′′(𝑧)
𝐶 (𝑧) = −4𝑧

©«𝑧 −
1

𝜋𝑇

(
1 + 1

2𝜋𝑧𝑇

) ª®®¬ (15)

Σ𝐹𝑟𝑒𝑒 (𝑧) ≡
𝐶′′′′(𝑧)
𝐶 (𝑧) = 16𝑧3 ©«𝑧 −

2

𝜋𝑇

(
1 + 1

2𝜋𝑧𝑇

) ª®®¬ (16)

Thus, at a large distance, we obtain Γ 𝑓 𝑟𝑒𝑒 and Σ 𝑓 𝑟𝑒𝑒 which are quadratic and quartic in 𝑧 respectively
upto O(1/𝑧) corrections.
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4. Isoscalar chemical potential response for correlator at finite temperature

The correlators and screening masses change analytically with temperature. Thus, at very
high temperatures and finite isoscalar chemical potential, we expect the correlator to have a similar
behavior as the free theory correlator given in (9). Considering the amplitude and screening mass
to be a function of the isoscalar chemical potential and having a contribution from only the ground
state, write them as

𝐶 (𝑧; 𝜇𝑆) = Re
[
(𝐴𝑅 (𝜇𝑆) − 𝑖𝐴𝐼 (𝜇𝑆)) 𝑒−𝑧 (𝑀𝑅 (𝜇𝑆 )+𝑖𝑀𝐼 (𝜇𝑆 )

]
= 𝑒−𝑧𝑀𝑅 (𝜇𝑆 ) {𝐴𝑅 (𝜇𝑆) cos

(
𝑧𝑀𝐼 (𝜇𝑆)

)
+ 𝐴𝐼 (𝜇𝑆) sin

(
𝑧𝑀𝐼 (𝜇𝑆)

)}
(17)

where the screening mass is 𝑀𝑠𝑐𝑟 (𝜇𝑆) = 𝑀𝑅 (𝜇𝑆) + 𝑖𝑀𝐼 (𝜇𝑆) and the amplitude is 𝐴(𝜇𝑆) =

𝐴𝑅 (𝜇𝑆) − 𝑖𝐴𝐼 (𝜇𝑆). Using 𝜇𝑖 = 𝜇 𝑗 = 𝜇𝑆 in (5), we get constraint on the correlator

𝐶 (𝑧;−𝜇𝑆) = 𝐶∗(𝑧; 𝜇𝑆) (18)

For this relation to be satisfied, we must have 𝑀𝑅 (−𝜇𝑆) = 𝑀𝑅 (𝜇𝑆). For free theory we have
𝑀𝐼 (−𝜇𝑆) = −𝑀𝐼 (𝜇𝑆) for free theory and we expect the same behavior at finite temperature. This
requires 𝐴𝑅 (−𝜇𝑆) = 𝐴𝑅 (𝜇𝑆) and 𝐴𝐼 (−𝜇𝑆) = −𝐴𝐼 (𝜇𝑆) to satisfy (18). Thus, the real and imaginary
parts of the screening mass and amplitude are even and odd functions of 𝜇𝑆 respectively having
even and odd power of 𝜇𝑆 in the Taylor expansion. With this constraint, the correlator (17) can be
expanded in terms of 𝜇𝑆 where all the derivatives of 𝐴 and 𝑀 are obtained at 𝜇𝑆 = 0. Collecting
the terms with second and fourth powers of 𝜇𝑆 , and dividing them by the correlator, we obtain

Γ(𝑧) ≡ 𝑑2𝐶

𝐶𝑑𝜇2
𝑆

�����
𝜇𝑆=0

=
𝐶′′

𝐶

����
𝜇𝑆=0

=
𝐴′′
𝑅

𝐴𝑅
+ 𝑧

[
2
𝐴′
𝐼

𝐴𝑅
𝑀 ′
𝐼 − 𝑀 ′′

𝑅

]
− 𝑧2(𝑀 ′

𝐼 )2. (19)

= 𝛼2𝑧
2 + 𝛼1𝑧 + 𝛼0 (20)

Σ(𝑧) ≡ 𝑑4𝐶

𝐶𝑑𝜇4
𝑆

�����
𝜇𝑆=0

=
𝐶′′′′

𝐶

����
𝜇𝑆=0

=
𝐴′′′′
𝑅

𝐴𝑅
+ 𝑧(4

𝐴′
𝐼

𝐴𝑅
𝑀 ′′′
𝐼 + 4

𝐴′′′
𝐼

𝐴𝑅
𝑀 ′
𝐼 − 𝑀 ′′′′

𝑅 − 6𝑀 ′′
𝑅

𝐴′′
𝑅

𝐴𝑅
)

+𝑧2(3𝑀 ′′2
𝑅 − 12

𝐴′
𝐼

𝐴𝑅
𝑀 ′
𝐼𝑀

′′
𝑅 − 4𝑀 ′

𝐼𝑀
′′′
𝐼 − 6𝑀 ′2

𝐼

𝐴′′
𝑅

𝐴𝑅
)

+𝑧3(6𝑀 ′′
𝑅𝑀

′2
𝐼 − 4

𝐴′
𝐼

𝐴𝑅
𝑀 ′3
𝐼 ) + 𝑧4(𝑀 ′4

𝐼 ) (21)

= 𝛽4𝑧
4 + 𝛽3𝑧

3 + 𝛽2𝑧
2 + 𝛽1𝑧 + 𝛽0 (22)

Similar to the free theory expression (15) and (16), Γ(𝑧) is quadratic in 𝑧 and Σ(𝑧) is quartic in 𝑧.
Using the equations (19) and (21), we get 𝑀 ′

𝐼
and 𝑀 ′′

𝑅
as

𝑀 ′
𝐼 = −𝛼1/2

2 = 𝛽
1/4
4 (23)

𝑀 ′′
𝑅 =

1
4

(
2𝛼1 −

𝛽3
𝛼2

)
(24)

Although we have considered only the ground state contribution to the correlator, there is a
significant contribution from the excited states to the correlators at finite spatial distances [8] and
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we need to include their contributions into the expressions of 𝐶, Γ and Σ. Below we consider the
contribution of the first excited state into their equations with labels 0 and 1 corresponding to the
ground and first excited states respectively.

𝐶 (𝑧) = 𝐴0 exp−𝑀0𝑧 +𝐴1 exp−𝑀1𝑧 = 𝐴0 exp−𝑀0𝑧

[
1 + 𝐴1

𝐴0
exp−(Δ𝑀 )𝑧

]
(25)

Γ(𝑧) =

(
𝛼02𝑧

2 + 𝛼01𝑧 + 𝛼00
)
+ 𝐴1
𝐴0

exp−(Δ𝑀 )𝑧 (𝛼12𝑧
2 + 𝛼11𝑧 + 𝛼10

)
1 + 𝐴1

𝐴0
exp−(Δ𝑀 )𝑧

≃
(
𝛼02𝑧

2 + 𝛼01𝑧 + 𝛼00
)

1 + 𝐴1
𝐴0

exp−(Δ𝑀 )𝑧
(26)

Σ(𝑧) =

(
𝛽04𝑧

4 + 𝛽03𝑧
3 + 𝛽02𝑧

2 + 𝛽01𝑧 + 𝛽00
)
+ 𝐴1
𝐴0

exp−(Δ𝑀 )𝑧 (𝛽14𝑧
4 + 𝛽13𝑧

3 + 𝛽12𝑧
2 + 𝛽11𝑧 + 𝛽10

)
1 + 𝐴1

𝐴0
exp−(Δ𝑀 )𝑧

≃
(
𝛽04𝑧

4 + 𝛽03𝑧
3 + 𝛽02𝑧

2 + 𝛽01𝑧 + 𝛽00
)

1 + 𝐴1
𝐴0

exp−(Δ𝑀 )𝑧
(27)

Thus, when including the contribution for the first excited states, both Γ and Σ are quadratic and
quartic with an exponential decaying denominator reaching the value of the ground state coefficient
asymptotically.

5. Lattice setup

All the numerical data in this work used the Bielefeld GPU code [9] to generate the lattices. They
were constructed by simulating staggered fermion operators using (2+1) flavor HISQ action gauge
field ensembles. The strange mass for the configurations was tuned to the physical mass by tuning
the mass of 𝜂𝑠𝑠 meson 𝑀𝜂�̄�𝑠 = 686 MeV [8] and ratio 𝑚𝑠/𝑚𝑙 = 20 is kept constant corresponding to
the pion mass 160 MeV. The lattice scale is set using the kaon decay constant 𝑓𝐾 = 156.1/

√
2 MeV.

The configurations were generated using the leapfrog evolution with molecular dynamics step size
0.2 and trajectory length of 5 steps keeping the acceptance rate between 65% to 80%. The meson
correlators are measured on every 10𝑡ℎ configuration.

The free theory analysis was performed for lattice volume 803 × 8. The finite temperature
analysis was done for 𝑁𝜎 = 64 with 𝑁𝜏 = 8. The corresponding configurations and quark masses
are presented in table 1. 1000 random source vectors were used for estimating traces on each
configuration. 8 point sources were used on each configuration to measure the correlator-like
operator.

𝑁𝜎 𝛽 T[GeV] 𝑚𝑙 𝑚𝑠 configurations
64 9.670 2.90 0.0001399 0.002798 6000
64 9.360 2.24 0.00018455 0.003691 6000

Table 1: The list of configurations used for the finite temperature. All the configurations used here have
𝑁𝜏 = 8.

6
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Figure 1: (left) Γ(𝑛𝑧) and (right) Σ(𝑛𝑧) plotted for free theory with against 𝑛𝑧 calculated on lattice with
volume 803 × 8 for pseudoscalar meson. The solid curves in both figures are theoretical equations given in
(15) and (16).

6. Lattice results

The lattice expressions for derivatives of the correlator for the staggered fermions are given in
[4, 10] which are obtained by taking 𝜇𝑆 derivatives of the meson propagator 𝐺 and the staggered
fermionic determinant. Using these we obtained the results discussed below.

In figure 1, we plot the lattice results for the free theory comparing Γ 𝑓 𝑟𝑒𝑒 and Σ 𝑓 𝑟𝑒𝑒 obtained on
the lattice with the theoretical expression (15) and (16) respectively. The good agreement between
the theoretical expressions and our lattice data provides support for our proposed ansatz (17).

For finite temperature, we first look at the effect of temperature on Γ and Σ. To see this, we
plot Γ/Γ 𝑓 𝑟𝑒𝑒 and Σ/Σ 𝑓 𝑟𝑒𝑒 for two temperatures in figure 2 (left). As we go to higher temperatures,
we expect these expressions to approach the asymptotic limit of the free theory with the curves
approaching the value of 1. In the figure, we see the same behavior with curves of higher temperature

0 5 10 15 20 25 30 35
nz

0.5

0.6

0.7

0.8

0.9

1.0

Γ(nz)/Γfree(nz)

Σ(nz)/Σfree(nz)

T = 2.24 GeV
T = 2.90 GeV

Figure 2: (left) Γ/Γ 𝑓 𝑟𝑒𝑒 and Σ/Σ 𝑓 𝑟𝑒𝑒 plotted against 𝑛𝑧 for 𝑇 = 2.24 GeV and 𝑇 = 2.90 GeV. (right)
Screening mass of the 𝑇 = 2.90 GeV correlator obtained by fitting the 𝜇𝑆 = 0 correlator using ground state
(1,0) and first excited state (2,0) ansatz. The best fitting function is chosen using Akaike criteria AICc [8].
The data points in both the figures are obtained using lattices with dimension 643 × 8 using point source and
𝑚𝑠/𝑚𝑙 = 20.
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being above the lower temperature. We also observe that the curves seem to plateau at larger 𝑛𝑧
which is also expected as at large 𝑛𝑧 only the highest order coefficient of the polynomial will
contribute, settling at a constant value. The upward deviation for 𝑛𝑧 > 29 values is due to the
boundary effects. To get rid of this boundary effect, we will fit our data to a conservative maximum
bound of 𝑛𝑚𝑎𝑥𝑧 = 25.

Figure 2 (right) plots the value of lattice screening mass at 𝑇 = 2.90 GeV obtained from fitting
the correlator to the staggered ansatz (8). The correlator is fitted to the ansatz represented by (1,0)
and (2,0) which correspond to the number of states considered in the fitting the correlator, i.e., 1
and 2 non-oscillating states respectively, with 0 oscillating states. The plot is obtained by keeping
the 𝑛𝑚𝑎𝑥𝑧 = 31 fixed and varying the 𝑛𝑚𝑖𝑛𝑧 . The best fit ansatz is chosen by the Akaike criteria AICc
[8]. We see that the first state has a significant contribution atleast till 𝑛𝑧 = 20 and thus, they need
to be accounted for when fitting Γ and Σ as seen in (26) and (27) respectively.

Using (26) and (27), we fit the data obtained on the lattice to obtain the fit coefficients. In
figure 3, we have plotted a sample plot for the fit coefficient (left) 𝛼2 and (right) 𝛽3 for 𝑇 = 2.24
GeV and 𝑇 = 2.90 GeV. The fit coefficients were obtained by fitting the data in a window such that
the contribution of boundary effect as well as the contribution of second excited states or higher is
reduced by fixing the 𝑛𝑚𝑎𝑥𝑧 = 25 while varying the 𝑛𝑚𝑖𝑛𝑧 . In the figure, we observe that the value
of 𝛼2 plateaus as we go to higher 𝑛𝑚𝑖𝑛𝑧 where we get a larger contribution from the ground state
and the contribution of the first excited state is expected to exponentially decay. The value of the
parameter is taken bootstrapping over the plateau interval. The value interval considered for the
plot along with its error is also plotted in the figures.

Using the fitting procedure mentioned above, we obtain the table 2 where we have tabulated the
fitting coefficients 𝛼2, 𝛼1, 𝛽4, and 𝛽3. The values obtained are quite different from the free theory
value while they seem to approach the free theory value with increasing temperature. Using (23)
and (24), we have also tabulated the values of 𝑀 ′

𝐼
and 𝑇𝑀 ′′

𝑅
. The value of 𝑀 ′

𝐼
also approaches the

free theory value with increasing temperature. The value of 𝑀 ′′
𝑅

while is zero within error but is
leaning to have a negative value suggesting the mass decreases with increasing isoscalar chemical
potential.
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Figure 3: Fit parameters (left) 𝛼2 and (right) 𝛽3 plotted against 𝑛𝑚𝑖𝑛𝑧 . The 𝑛𝑚𝑎𝑥𝑧 = 25 has been fixed for
all fit windows. The data points in both the figures are obtained using lattices with dimension 643 × 8 at
𝑇 = 2.24 GeV and 𝑇 = 2.90 GeV using point source and 𝑚𝑠/𝑚𝑙 = 20. The value and error on the parameter
is obtained by bootstrapping over the plateau interval as seen above.
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Temperature 𝑇 𝛼2 𝛼1 𝛽4 𝛽3 𝑇𝑀 ′′
𝑅

𝑀 ′
𝐼

2.24 GeV -2.06(11) -11.7(5.6) 6.04(24) 35.7(5.7) -0.22(39) 1.43(3)
2.90 GeV -2.23(11) -9.3(6.5) 6.73(24) 24.5(7.3) -0.24(43) 1.49(4)

Free theory -4 10.2 16 -81.5 0 2

Table 2: Values for the polynomial fit parameters 𝛼2, 𝛼1, 𝛽4 and 𝛽3 along with the 𝑇𝑀 ′′
𝑅

and 𝑀 ′
𝐼

for two
temperatures and free theory. The analysis is done on lattices with 𝑁𝜏 = 8 and 𝑁𝜎 = 64.

7. Conclusion

In this work, we tried to look at the response of the correlator with the isoscalar chemical
potential and obtain correction to the screening mass. We find that the free theory correlator has
an oscillating behavior as the screening mass is complex. We verified the free theory expression
for the screening correlator derived analytically at finite isoscalar chemical potential by looking at
its derivatives on the lattice. Using the symmetric arguments, we extended the analysis to finite
temperatures where we obtained the correction to the real part of the screening mass 𝑀 ′′

𝑅
for two

high temperatures. The value of the correction was zero within errors due to large statistical errors
but was leaning on the negative side. We also obtained the imaginary part of the screening mass
𝑀 ′
𝐼

which seemed to approach the correct free theory limit.
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