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Thermal photons from the QGP provide important information about the interaction among plasma
constituents. The photon production rate from a thermally equilibrated system is proportional to
the transverse spectral function 𝜌𝑇 (𝜔 = | ®𝑘 |, ®𝑘). One can also calculate the photon production rate
from the difference between 𝜌𝑇 (𝜔, ®𝑘) (transverse) and 𝜌𝐿 (𝜔, ®𝑘) (longitudinal) projections, as 𝜌𝐿
vanishes on the photon point. Because the UV part of 𝜌𝑇 − 𝜌𝐿 is suppressed, the corresponding
Euclidean correlator receives most of its contribution from the IR part. We calculate the 𝑇 −𝐿
correlator on 𝑁 𝑓 = 2 + 1 flavour HISQ configurations with 𝑚𝑙 = 𝑚𝑠/5 at temperature of about
1.15𝑇𝑝𝑐 (220 MeV). We have used two ansätze for the spectral function: 1) A polynomial
connected to the UV region consistent with OPE expansion and 2) a hydro-inspired spectral
function. We have also applied the Backus-Gilbert method to estimate the spectral function. All
these different approaches are combined to estimate the photon production rate.
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1. Introduction

Lattice QCD determinations of the equation of state (EoS) confirm the transition from hadronic
matter to the quark-gluon plasma (QGP) phase under increasing temperature [1, 2]. Experimentally
this QGP phase has been studied in high-energy heavy ion collisions at the RHIC and LHC facilities.
Photons and dileptons produced in the plasma are a vital probe of the QGP because the mean free
paths of the photon and the dilepton (i.e. virtual photon) are much larger than the typical size of
the plasma [3]. Therefore photons and dileptons can transfer information about the plasma from
the point at which it was created and throughout its spacetime evolution.

The photon and dilepton production rate from a thermalized QGP, at temperature 𝑇 , to leading-
order in the electromagnetic coupling 𝛼em are given by [4],

𝑑Γ𝛾

𝑑3®𝑘
=
𝛼em𝑛𝐵 (𝑘)
𝜋2𝑘

(∑𝑁 𝑓

𝑖=1𝑄
2
𝑖

)
𝜌𝑇 (𝑘, ®𝑘) , (1)

𝑑Γ𝑙+𝑙−

𝑑𝜔𝑑3®𝑘
≃

𝛼2
em𝑛𝐵 (𝜔)

3𝜋2(𝜔2 − 𝑘2)

(∑𝑁 𝑓

𝑖=1𝑄
2
𝑖

) (
2𝜌𝑇 (𝜔, ®𝑘) + 𝜌𝐿 (𝜔, ®𝑘)

)
, (2)

where 𝑛𝐵 is the Bose distribution and 𝑄𝑖 is the charge of a quark of flavour 𝑖 in units of the electron
charge. All QCD information is encoded in 𝜌𝑇 (𝜔, ®𝑘) and 𝜌𝐿 (𝜔, ®𝑘) which denote the transverse
and longitudinal spectral functions at frequencies 𝜔 and momenta ®𝑘 .

Perturbation theory is an important tool to calculate the spectral function in the weak coupling
limit. One can use naive (NLO) perturbation theory away from the light cone to calculate the
spectral function directly [5]. However, near the light cone, resummation (LPM) of specific
Feynman diagrams is essential to obtain correct results [6]. In general, one must interpolate
between the two regimes [7]1.

On the lattice, however, we need to calculate spectral functions from a lattice correlator by
using the following relation,

𝐺𝐸 (𝜏, ®𝑘) =

∫ ∞

0

𝑑𝜔

𝜋
𝜌(𝜔, ®𝑘) cosh[𝜔(1/2𝑇 − 𝜏)]

sinh(𝜔/2𝑇) . (3)

Extraction of the spectral function from noisy lattice data, using the above equation, is a well-known
numerically ill-posed problem. Physically motivated assumptions are required to extract the spectral
function from the lattice correlator.

Following Ref. [10], we estimate the photon production rate from the 𝐺𝐻 = 2(𝐺𝑇 − 𝐺𝐿)
correlator rather than 𝐺𝑇 . This is because the spectral function 𝜌𝐻 = 2(𝜌𝑇 − 𝜌𝐿) is identical
to 𝜌𝑇 at 𝜔 = 𝑘 (photon point), and the UV part of 𝜌𝐻 is much suppressed compared to the IR
part of the spectral function. Therefore the resultant lattice correlator 𝐺𝐻 is mostly dominated by
the important IR part of the spectral function, in contrast to the 𝐺𝑇 correlator, which is mostly
dominated by the UV part of 𝜌𝑇 . Previously, the photon production rate has also been estimated
from the correlator, which has a large UV contribution [14, 15]2. It is known that the resulting

1These calculations have now been extended to finite baryon chemical potential [8].
2Recently, the photon production rate has also been estimated from the 𝐺𝑇 correlator [9]. In Ref.[11] photon

production rate has also been estimated from imaginary momentum correlators
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𝑇 − 𝐿 spectral function also satisfies the following sum rule in the chiral limit [20],∫ ∞

0
𝑑𝜔𝜔 𝜌𝐻 (𝜔, ®𝑘) = 0 . (4)

Our aim is then to compute the 𝐺𝐻 correlator on the lattice and make ansatz for the spectral
function to fit the lattice data such that it satisfies the above sum rule. This proceedings contribution
is organized as follows. In the next section, we will present lattice details. In Sec. 3, reconstruction
of the spectral function is performed using two models and the Backus-Gilbert (BG) method.
Sec. 4 contains the final results of the effective diffusion coefficient (directly related to the photon
production rate) extracted from the spectral functions from Sec. 3.

2. Lattice Details

To calculate the correlation functions, we use 𝑁 𝑓 = 2+1 flavor QCD gaugefield configurations
generated with the HISQ action by the HotQCD collaboration. These configurations correspond
to an unphysical pion mass 𝑚𝜋 = 315 MeV with 𝑚𝑙 = 𝑚𝑠/5. We used the lattice size 963 × 32,
corresponding to a temperature of 220 MeV. On these configurations, we calculate the correlation
function using clover-improved Wilson fermions with the parameters 𝜅 = 0.13515 and tadpole
improved tree-level 𝑐𝑠𝑤 = 1.34108. We have used around 1700 configurations for the computation
of these correlators. These parameters for Wilson clover fermion are chosen to reproduce the above
staggered pion mass. The possible spatial momentum is fixed by the aspect ratio of the lattice,
which is, in this case, 𝑘𝑛/𝑇 = 2𝜋𝑛𝑁𝑡/𝑁𝑠 = 2𝜋𝑛/3 where 𝑛 is an integer.
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Figure 1: The Euclidean hadronic correlator 𝐺𝐻 as measured on the lattice, at the points 𝜏𝑇 =

{ 2
32 ,

3
32 , . . . ,

16
32 }, for various momenta (namely 𝑘𝑛 for 𝑛 = 1, 2, 3). The continuous lines are the corre-

sponding estimates from resummed perturbation theory (NLO+LPM) as described in Ref. [13].

3. Lattice correlator and spectral reconstruction

The 𝐺𝐻 correlator calculated on the lattice is multiplicatively renormalizable. However, the
ratio 𝐺𝐻/2𝜒𝑞𝑇 does not need renormalization. Here 𝜒𝑞 is the quark number susceptibility. On the
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lattice, we can calculate the correlation function 𝐺𝜇𝜈 of electromagnetic current 𝐽𝜇, from which
one can easily calculate this ratio by using the following formula,

𝐺𝐻 (𝜏, ®𝑘 = (0, 0, 𝑘𝑧))
2𝜒𝑞𝑇

=
𝐺𝑥𝑥 (𝜏, ®𝑘) + 𝐺𝑦𝑦 (𝜏, ®𝑘) − 2(𝐺𝑧𝑧 (𝜏, ®𝑘) − 𝐺00(𝜏, ®𝑘))

2𝐺00(𝜏, ®𝑘)
. (5)

The renormalized lattice correlator is obtained by multiplying this ratio by 2𝜒𝑞. We have
estimated 𝜒𝑞 ≈ 0.872𝑇2 from the order 𝑔6 ln(𝑔) perturbative calculation [12]. Therefore we are
essentially renormalizing the correlator perturbatively. The resulting perturbatively renormalized
correlator is shown in Fig. 1. In this figure, we have also shown the NLO+LPM perturbative
estimate of the corresponding correlator [13]. The difference between the perturbative and lattice
estimates of the correlator signifies non-perturbative effects.

As mentioned, spectral reconstruction from lattice using Eq. (3) is an ill-posed problem.
Therefore various possible spectral functions can reproduce the lattice data and well-motivated
assumptions are required in practice for spectral reconstruction. Here we will present two physically
motivated models of the spectral function that can fit our lattice data.

3.1 Model spectral functions

For the first model to be considered, we have used a spectral function which has the following
piecewise polynomial form (𝜔0 is a parameter of the model)

𝜌
poly
𝐻

(𝜔) = 𝜌< Θ(𝜔0 − 𝜔) + 𝜌> Θ(𝜔 − 𝜔0) , (6)

where

𝜌< ≡ 𝛽𝜔3

2𝜔3
0

(
5 − 3

𝜔2

𝜔2
0

)
− 𝛾𝜔3

2𝜔2
0

(
1 − 𝜔2

𝜔2
0

)
+ 𝛿 𝜔
𝜔0

(
1 − 𝜔2

𝜔2
0

)2

, (7)

𝜌> ≡ −
𝛽 𝜔4

0
7𝜔4

(
54
𝜔4

0
𝜔4 − 94

𝜔2
0

𝜔2 + 33

)
+

𝛾 𝜔5
0

140𝜔4

(
−81

𝜔4
0

𝜔4 + 92
𝜔2

0
𝜔2 − 11

)
−

16 𝛿 𝜔4
0

35𝜔4

(
1 −

𝜔2
0

𝜔2

)2

,

(8)

and Θ is the Heaviside step function. The part of the spectral function for 𝜔 < 𝜔0 is taken from
Ref. [15] and has been used based on the smoothness of the spectral function across the light cone.
The second form of the expansion is motivated by the operator product expansion, according to
which 𝜌𝐻 (𝜔) ∼ 1/𝜔4 at large 𝜔 [20].

The various coefficients appearing in Eq. (7) and Eq. (8) have been chosen such that 𝜌𝐻 (𝜔)
is smooth at 𝜔 = 𝜔0 and satisfies the sum rule in Eq. (4). The parameters 𝛽 and 𝛾 correspond to
the value of the spectral function and its derivative, respectively, at 𝜔0. The parameter 𝛿 controls
the slope of the spectral function at the origin. We perform the fit of our data with respect to 𝛽,
𝛾, and 𝛿, under the constraints 𝛿 ≥ 0, 𝜌𝐻 (𝑘, ®𝑘) ≥ 0 and 𝜕𝐺𝐻 (𝜏 )

𝜕𝜏
≤ 0. The first constraint comes

from the fact that in hydrodynamics, 𝛿 is related to the diffusion coefficient and, therefore, cannot
be negative. The second constraint amounts to the fact that the photon production rate cannot be
negative.

Before fitting the above spectral ansatz to the lattice data, we performed a mock data analysis
wherein we reconstruct the exactly known NLO+LPM spectral function from the known NLO+LPM

4
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Figure 2: Mock analysis of perturbative data, showing data points from NLO+LPM correlators used for the
spectral reconstruction, the error on each point is 0.1% (left). Red bands are the correlator obtained from
the fitted spectral function, with the width of the band stemming from uncertainty in the fit parameters. The
black curves are the perturbative correlator at all 𝜏𝑇 and thus pass through the mock data points. On the right,
we show the reconstructed spectral function from ‘perturbative data,’ alongside the exact spectral function
as a red dotted curve.

correlation function. To perform the fit with above the spectral function, we have artificially
introduced an error into the perturbative correlator of the following form 𝛿𝐺𝐻

𝐺𝐻
= 0.001. For this

reconstruction, we used 10 data points between 𝜏𝑇 = 0.1875 to 𝜏𝑇 = 0.5. The resulting spectral
function, along with the fitted correlator, is shown in Fig. 2. In the left panel of Fig. 2, we depict
the perturbative data points used for the spectral reconstruction. The red band corresponds to
the correlator obtained from the fitted spectral function, and the black curve is the perturbative
correlator. We see that we could predict data points beyond the fitting range with the above-fitted
ansatz. On the right panel of Fig. 2, the reconstructed spectral function for a few values of the
matching point 𝜔0 is shown. The red dotted line corresponds to the exact spectral function for the
correlator. We observe that the spectral function shows some change with respect to 𝜔0, however
within a systematic uncertainty of 𝜔0 between

√︁
𝑘2 + (𝜋𝑇)2 and

√︁
𝑘2 + 5(𝜋𝑇)2 we could indeed be

able to encompass the exact spectral function.
After verifying the above spectral function with the perturbative data, we now proceed to fit

the lattice correlator. The fitting range we have taken is in 𝜏𝑇 between 0.1875 and 0.5, as the short
distance part is dominated by lattice artifacts. The spectral function for various 𝜔0 is shown in the
right panel of Fig. (3). The red shaded band in the right panel corresponds to the fitted correlator.
We see the expected feature that the spectral function is IR-dominated. For the calculation of photon
production rate, we take the variation with 𝜔0 as a source of systematic error from this ansatz. We
have also shown the corresponding NLO+LPM perturbative spectral function in the same figure.
We see that at 𝜔 ≪ 𝑘 , the perturbative spectral function is suppressed compared to our model
spectral function, whereas near the light cone, the model spectral function is consistently below the
value of the perturbative prediction.

We show the spectral function for 𝜔0 =
√︁
𝑘2 + (𝜋𝑇)2 for various momenta in Fig. (4). We

observe that the IR part of the spectral function is suppressed for higher momentum compared to
small momentum. This behavior is expected because the spectral function becomes 𝜔 𝛿(𝜔) by

5
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Figure 3: (Left) The data points correspond to the lattice correlator calculated at various momenta. The
red band is the correlator from the fitted spectral function. (Right) The reconstructed spectral function for
𝑘/𝑇 = 4.19 along with the perturbative spectral function.
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Figure 4: Spectral function for various momenta, as a function of 𝜔. In the left panel, we show the result
from a polynomial ansatz (6), and the right panel depicts the best fit from a hydro ansatz (9). Both functions
have the correct UV behavior.

rotational symmetry at zero momentum. At finite momentum, this 𝛿(𝜔) function develops a finite
width, which increases with increasing momentum.

The second ansatz is motivated by relaxation-time hydrodynamics [21]. The spectral function
in this model is taken as

𝜌
hydro
𝐻

(𝜔, ®𝑘) = 𝐴
tanh(𝜔/𝑇) 𝑘2 (1 + 𝑎2 𝑘2 − 2 𝑎 𝑏 𝜔2 + 𝑏2𝜔2)
(1 + 𝑏2 𝜔2) (𝑎2 𝑘4 + 𝜔2 − 2𝑎 𝑘2 𝑏 𝜔2 + 𝑏2 𝜔4)

, (9)

with parameters 𝐴, 𝑎 and 𝑏 . At large 𝜔, this spectral function goes like 1/𝜔4 in accordance with
the OPE prediction. The sum rule, on the other hand, will allow the parameter 𝑎 to be expressed in
terms of 𝑏. Then we perform a two-parameter fit of this spectral function with the lattice data. The
resulting spectral function for various momenta has been shown in the right panel of Fig. 4.

3.2 Backus-Gilbert estimate of 𝜌𝐻 (𝜔, ®𝑘)

The third approach that we have used is the Backus-Gilbert (BG) method [16]. BG method has
been widely used for the spectral reconstruction from lattice correlator [17, 18]. In this method,

6
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Figure 5: Backus-Gilbert estimated spectral function, (Left) Variation of spectral function with 𝜆 for
𝑘/𝑇 = 4.19. (Right) Spectral function for 𝜆 = 0.01 for various momenta.

one rewrites the integral transform (3) in the following form,

𝐺𝐻 (𝜏, ®𝑘) =

∫ ∞

0
𝑑𝜔

𝜌(𝜔, ®𝑘)
𝑓 (𝜔, ®𝑘)

𝐾 (𝜔, 𝜏) ; 𝐾 (𝜔, 𝜏) ≡ 𝑓 (𝜔, ®𝑘) cosh[𝜔(𝛽/2 − 𝜏)]
sinh(𝜔𝛽/2)𝜋 . (10)

The purpose of the function 𝑓 (𝜔, ®𝑘) is to put physics information in the reconstruction process and
remove the singularity originating from the denominator of the kernel.

The BG strategy is to write the spectral function as a linear combination of the temporal lattice
correlator, (𝑖 enumerates the measured points)

𝜌BG
𝐻

(𝜔, ®𝑘)
𝑓 (𝜔, ®𝑘)

=
∑︁
𝑖

𝑞𝑖 (𝜔, ®𝑘)𝐺𝐻 (𝜏𝑖 , ®𝑘) =

∫ ∞

0
𝑑𝜔′𝛿(𝜔′, 𝜔) 𝜌𝐻 (𝜔′, ®𝑘)

𝑓 (𝜔′, ®𝑘)
, (11)

where 𝛿(𝜔, 𝜔′) =
∑

𝑖 𝑞𝑖 (𝜔, ®𝑘)𝐾 (𝜔′, 𝜏𝑖) is the so-called resolution function. The BG estimated
spectral function would be the exact spectral function when 𝛿(𝜔, 𝜔′) = 𝛿(𝜔 − 𝜔′). Therefore the
goal is to minimize the width of the resolution function as small as possible by varying 𝑞𝑖 , which
can be done by minimizing the following function,

𝐴(𝜔) =

∫
𝑑𝜔̄(𝜔 − 𝜔̄)2𝛿(𝜔, 𝜔̄)2 = 𝑞𝑡 (𝜔).𝑊 (𝜔).𝑞(𝜔) , (12)

where 𝑊𝑖 𝑗 (𝜔) ≡
∫ ∞

0 𝑑𝜔̄ (𝜔 − 𝜔̄)2𝐾 (𝜔̄, 𝜏𝑖)𝐾 (𝜔̄, 𝜏𝑗). Minimization of this function requires the
inversion of the matrix 𝑊 . However, the 𝑊 matrix is badly conditioned, which causes the min-
imization to be unstable. The minimization of the following regularized function can overcome
this,

𝐹 (𝜔) = 𝜆𝐴(𝜔) + (1 − 𝜆)𝐵(𝜔) (13)

where 𝐵(𝜔) = Var[𝜌BG(𝜔)] = 𝑞𝑡 (𝜔).𝑆.𝑞(𝜔) with 𝑆 being the covariance matrix. Various other
regularization schemes have also been used in literature, for example, one such regularization is the
Tikhonov scheme where 𝑆𝑖 𝑗 = 𝛿𝑖 𝑗 [19]. The parameter 𝜆 is related to the width of the resolution
function and as well as the error on the spectral function. The ‘better’ choices of 𝑓 (𝜔, ®𝑘) should
also help reduce the resolution function’s width.
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Figure 6: Resolution function obtained from the BG method on the light cone for various momenta for
𝜆 = 0.01.
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Figure 7: (Left) Effective diffusion coefficient obtained from various methods. (Right) Effective diffusion
coefficients obtained from various models have been combined to get a systematic error band. In both panels,
the perturbative band is give by varying the scale choice in the running coupling – see Ref. [13] for details.

For the calculation of the BG estimated spectral function for our lattice correlator, we used the
following function,

𝑓 (𝜔) =
tanh(𝜔/𝑇)

1 + (𝜔/𝜔0)2 + (𝜔/𝜔0)4 (14)

where, 𝜔0 =
√
𝑘2 + 𝜋2𝑇2. This functional form is motivated by the observation that at small 𝜔, the

spectral function should be proportional to 𝜔, whereas, at large 𝜔, the spectral function should go
like 1/𝜔4.

The BG estimated spectral function is plotted for various values of 𝜆 in the left panel of Fig. 5.
The variation with respect to 𝜆 is taken to the systematic error. The spectral function for various
momenta for 𝜆 = 0.01 is shown in the right panel of Fig. 5. We observe the same qualitative trend
of the spectral function as from the model fit of the data. The resolution function at the photon
point is plotted in Fig. 6 for all available momenta. We note that the resolution function is peaked
around 𝜔0 ≃ |®𝑘 | .
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4. Effective diffusion coefficient

The photon production rate can be rewritten in terms of the so-called effective diffusion
coefficient,

𝐷eff (𝑘) ≡ 𝜌𝐻 (𝑘, ®𝑘)
2𝜒𝑞𝑘

. (15)

The value of 𝐷eff (𝑘) estimated from two models, and the BG method is shown in the left panel
of Fig. 7. We see that at small momentum, the model prediction has considerable uncertainty,
whereas, at large momentum, different methods seem to agree mutually. We also observe that at
large momentum, 𝐷eff is smaller than the perturbative estimate. In the right panel, we combined
the model results to get a systematic uncertainty on 𝐷eff .

5. Conclusion

We estimated the photon production rate from the 𝑇 − 𝐿 correlator from 𝑁 𝑓 = 2+1 flavor QCD
for 𝑚𝜋 = 313 MeV at 𝑇 = 220 MeV. The 𝑇 − 𝐿 correlator was calculated using Clover-improved
Wilson fermions on HISQ configurations. Various models have been used for spectral reconstruction
from the lattice correlator. For the first model, we have used a piecewise polynomial which smoothly
connects a quintic function of 𝜔 in the IR with the asymptotic 1/𝜔4 form in the UV. We apply this
model first to a mock correlator from NLO+LPM resummed perturbation theory, where we know
the exact spectral function. Within systematic uncertainty, we could reproduce this perturbative
spectral function. Then we fit this model to the lattice correlator, with the result for various momenta
shown in the left panel of Fig. 4. A model based on relaxation time hydrodynamics was similarly
considered, with the resulting spectral function being shown in the right panel of Fig. 4. We have
also used the Backus-Gilbert method to estimate the spectral function. In all these methods, we
found qualitative agreement; namely, the spectral function is IR-dominated. The effective diffusion
coefficient from all these methods is shown in Fig. 7. We use the spread in values obtained via
the different methods as a proxy for the systematic uncertainty from reconstructing the spectral
function.
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