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The so-called Columbia plot summarises the order of the QCD thermal transition as a function of
the number of quark flavours and their masses. Recently, it was demonstrated that the first-order
chiral transition region, as seen for 𝑁 𝑓 ∈ [3, 6] on coarse lattices, exhibits tricritical scaling while
extrapolating to zero on sufficiently fine lattices. Here we extend these studies to imaginary baryon
chemical potential. A similar shrinking of the first-order region is observed with decreasing lattice
spacing, which again appears compatible with a tricritical extrapolation to zero.
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Figure 1: Two plausible scenarios for the Columbia plot proposed in [1]. From [7].

1. Introduction

The order of the QCD chiral phase transition in the chiral limit has been a challenging topic for
the last decades. Since the mid-eighties two plausible scenarios have been predicted for 𝑁 𝑓 = 2,
either a first-order or a second-order phase transition, depending on the anomalous 𝑈 (1)𝐴 axial
symmetry, whereas a first-order phase transition was predicted for 𝑁 𝑓 ≥ 3 [1]. For 𝑁 𝑓 = 2 + 1,
the order of the QCD thermal phase transition at zero density is shown in the Columbia plot [2],
where the nature of the QCD thermal transition is depicted, with first-order regions and a crossover
region, separated by 3D Ising (𝑍2) - lines of critical masses. The ambiguity for 𝑁 𝑓 = 2 is reflected
in the left area of the plots shown in figure 1, with a possible first-order region for all strange quark
masses, or the presence of a tricritical point, where the first-order region meets the second-order
line in the chiral limit. Many studies using different discretisations have been devoted to decide
between these scenarios, with apparently conflicting results. A general trend is that finer lattices or
highly improved actions make the first-order region shrink. A detailed discussion and references
can be found in [3–5].

QCD for 𝑁 𝑓 degenerate flavours of quarks at zero density is described by the following partition
function

𝑍 (𝛽, 𝑎𝑚, 𝑁 𝑓 , 𝑁𝜏) =
∫

D𝑈 (det 𝐷 [𝑈])𝑁 𝑓 𝑒−𝑆𝑔 [𝑈 ] , (1)

where 𝛽 = 6/(𝑔(𝑎))2 is the lattice gauge coupling, 𝑎𝑚 are the bare quark masse on the lattice and
𝑁𝜏 = (𝑎(𝛽)𝑇)−1 is the lattice temporal extent, 𝑇 being the temperature. A new approach presented
in [6, 7], consisting in the analytic continuation of the 𝑁 𝑓 parameter from integer to continuous
values, was able to resolve the question about 𝑁 𝑓 = 2, 3. The results from this work are shown
in the (𝑎𝑚, 𝑁 𝑓 ) plane presented in figure 2, where the points correspond to different 𝑍2-critical
masses 𝑎𝑚𝑐 for different 𝑁 𝑓 values, and separate the crossover region above from the first-order
region below, for 𝑁𝜏 ∈ {4, 6, 8}. The fitting lines for 𝑁𝜏 = {4, 6} follow the equation

𝑎𝑚(𝑁𝜏 , 𝑁 𝑓 ) ≈ B1(𝑁𝜏) (𝑁 𝑓 − 𝑁 tric
𝑓 )5/2 + B2(𝑁𝜏) (𝑁 𝑓 − 𝑁 tric

𝑓 )7/2, (2)
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Figure 2: The (𝑎𝑚, 𝑁 𝑓 ) plane with 𝑁 𝑓 as a continuous
parameter. The points represent the critical masses,
𝑎𝑚𝑐. The fitting lines correspond to the extrapolation
towards the chiral limit, compatible with a tricritical
scaling. From [7].
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Figure 3: The critical masses 𝑎𝑚𝑐 represented in the
((𝑎𝑚)2/5, 𝑎𝑇) plane, compatible with a tricritical scal-
ing. From [7].

and represent the extrapolation to the lattice chiral limit. Note that a tricritical point must exist
whenever the chiral transition in the massless limit changes from first to second order. The exponents
reflect tricritical scaling for sufficiently small 𝑎𝑚𝑐 values, whose observation allows to identify and
locate such a tricritical point 𝑁 𝑓

tric(𝑁𝜏) along the x-axis. As shown in figure 3, the same data can
be depicted in the ((𝑎𝑚)2/5, 𝑎𝑇) plane, with 𝑎𝑇 = 𝑁𝜏

−1. Here again the first-order region below
the critical masses is separated from the crossover above, and the bare quark masses have been
rescaled to represent the tricritical scaling field, (𝑎𝑚)2/5. The extrapolation towards the chiral limit
is performed according to

𝑎𝑚(𝑁𝜏 , 𝑁 𝑓 )2/5 ≈ A1(𝑁 𝑓 ) (𝑎𝑇 − 𝑎𝑇tric) + A2(𝑁 𝑓 ) (𝑎𝑇 − 𝑎𝑇tric)2, (3)

and results in 𝑎𝑇tric(𝑁 𝑓 ). The last result is crucial to give a resolution to the ambiguous continuum
situation in figure 1. Indeed, for 𝑁 𝑓 ∈ [2, 6] the extrapolation towards the lattice chiral limit is
always compatible with a finite 𝑎𝑇tric(𝑁 𝑓 ). On the other hand, the lines of constant physics for any
quark mass have their continuum limit in the origin of the same plot [7]. Then, also for 𝑁 𝑓 ∈ [2, 3]
in the Columbia plot, the chiral phase transition must be of second order.

An extension of the Columbia plot is given through the introduction of a non-zero imaginary
quark chemical potential, 𝜇 = 𝑖𝜇𝑖 . The partition function obeys

𝑍 (𝜇) = 𝑍 (−𝜇) 𝑍

( 𝜇
𝑇

)
= 𝑍

(
𝜇

𝑇
+ 𝑖

2𝜋𝑘
3

)
, 𝑘 ∈ Z (4)

where the left equation represents the charge-parity symmetry, whereas the right one corresponds
to the Roberge-Weiss periodicity [8]. This provides a third axis as in figure 4: The 𝜇 = 0 surface
of the cube is the usual 2D Columbia plot, whereas moving down along the (𝜇/𝑇)2 -axis means
to vary the value of 𝜇𝑖 until the bottom surface, corresponding to the Roberge-Weiss plane with
𝜇𝑖 = 𝜋𝑇/3, is reached. Both first-order regions in the Columbia plot grow while approaching the
Roberge-Weiss plane on coarse 𝑁𝜏 = 4 lattices [9–17].
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Figure 4: Schematic representation of the
3D Columbia plot for 𝑁𝜏 = 4, where
negative (𝜇/𝑇)2 means imaginary baryon
chemical potential. For 𝜇/𝑇 = 0, the 2D
Columbia plot is represented, whereas for
𝜇/𝑇 = 𝑖𝜋/3 it is the Roberge-Weiss plane.
From [9].

Figure 5: Sketch of the procedure used to collect data.

In this work we investigate the order of the chiral phase transition as a function of lattice spacing
using 𝑁 𝑓 as a continuous parameter when 𝜇𝑖 = 0.81𝜋𝑇/3. We then study the 𝑍2 critical surface
and observe how it approaches the chiral limit. At the end, we will compare the results with the
ones at zero density from [7].

2. Strategy

The strategy we follow to collect data is summarised in figure 5. The first step consists in
setting 𝑁 𝑓 ∈ {2.3, 3.3, 3.6, 4.0, 4.5, 5.0} and for any fixed 𝑁 𝑓 , the lattice temporal extent is fixed
such that 𝑁𝜏 ∈ {4, 6, 8}. For any 𝑁𝜏 value, at least three bare quark masses 𝑎𝑚 are chosen to
do a scan. At this point simulations are performed for aspect ratios 𝑁𝜎/𝑁𝜏 = 2, 3, 4 and we scan
for a set of lattice gauge coupling values, 𝛽. In our simulations, we use the unimproved staggered
fermion action.

The observable we use as approximate order parameter is the chiral condensate O = ⟨�̄�𝜓⟩,
whose sampled distribution is studied through standardised moments. In general, we have

⟨O⟩ = 𝑍−1
∫

D𝑈O[𝑈] (det𝐷 [𝑈])𝑁 𝑓 𝑒−𝑆𝑔 [𝑈 ] (5)

and the standardised moments are defined by

𝐵𝑛 (𝛽, 𝑎𝑚, 𝑁𝜎) =
⟨(O − ⟨O⟩)𝑛⟩
⟨(O − ⟨O⟩)2⟩ 𝑛

2
. (6)

The third standardised moment is the skewness 𝐵3(𝛽, 𝑎𝑚, 𝑁𝜎) and allows to identify the value of
the (pseudo-)critical 𝛽𝑐 value corresponding to the phase boundary by solving the equation

𝐵3(𝛽 = 𝛽𝑐, 𝑎𝑚, 𝑁𝜎) = 0. (7)
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Crossover 1𝑠𝑡 order 3𝐷 Ising
𝐵4 3 1 1.604(1)
𝜈 − 1/3 0.6301(4)

Table 1: List of kurtosis values in the infinite volume limit and critical exponent 𝜈. The 3𝐷 Ising values are
from [18].

Simulations are carried out for two to four 𝛽-values per mass of interest and volume 𝑁𝜎 , and
Ferrenberg-Swendsen reweighting [19] is employed to improve the resolution in the determination
of 𝛽𝑐. The last step consists in identifying the order of the chiral phase transition corresponding
to the simulated parameter setup. This is given by evaluating the fourth standardised moment, the
kurtosis

𝐵4(𝛽𝑐 (𝑎𝑚), 𝑎𝑚, 𝑁𝜎). (8)

In the infinite volume limit, the kurtosis values differ discontinuously with respect to the order of
the phase transition and are summarised in table 1. Simulations are always performed for finite
lattice volumes 𝑁𝜎 , where the discontinuity between those values is smoothed. Taking this into
account, the kurtosis evaluated at 𝛽𝑐 can be expanded for large enough volumes 𝑁𝜎 in the scaling
variable (𝑎𝑚 − 𝑎𝑚𝑐)𝑁1/𝜈

𝜎 [20],

𝐵4(𝛽𝑐, 𝑎𝑚, 𝑁𝜎) ≈ (1.604 + 𝑐(𝑎𝑚 − 𝑎𝑚𝑐)𝑁1/𝜈
𝜎 ) (1 + 𝑏𝑁

−𝑦
𝜎 ), (9)

with a critical exponent given in table 1. This formula contains a subleading finite volume correction
term depending on the 3D Ising critical exponent 𝑦 = 0.8940 [21].

Our simulations are performed using the RHMC algorithm which is implemented in our
publicly available CL2QCD code based on OpenCL, in its latest version v1.1 [22, 23]. Also
multiple pseudofermions [24] were involved in the simulations, in order to be able to use the RHMC
algorithm also when 𝑁 𝑓 is a multiple of 4. All of the simulations have been handled by using the
software BaHaMAS [25].

3. Results

The preliminary results coming from our simulations are summarised in figure 6. For 𝜇𝑖 ≠ 0
the data for 𝑁𝜏 = 6 allow to perform the first tricritical extrapolation, according to

𝑎𝑚(𝑁𝜏 , 𝑁 𝑓 , 𝜇𝑖) ≈ B1(𝑁𝜏 , 𝜇𝑖) (𝑁 𝑓 − 𝑁 tric
𝑓 )5/2 + B2(𝑁𝜏 , 𝜇𝑖) (𝑁 𝑓 − 𝑁 tric

𝑓 )7/2, (10)

which is the analogue of equation (2), but the coefficients now depend on 𝜇𝑖 . For 𝑁𝜏 = 8 we
might already be in the tricritical scaling region, but more points and statistics are needed to draw
conclusions. For 𝑁𝜏 = 4, the tricritical scaling region is expected to be detectable in the proximity
of 𝑁 𝑓 = 2.

From figure 4 one should expect a larger first-order region when moving down along the (𝜇/𝑇)2

axis for 𝑁𝜏 = 4 [9]. Indeed, comparing the results in figure 6 with the ones coming from 𝜇𝑖 = 0
simulations, we observe for 𝑁𝜏 = 4 the critical 𝑍2-masses to be larger than the ones resulting from
zero density. However, for 𝑁𝜏 = 6, 8 the opposite applies: this highlights the mixed dependence of

5
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Figure 6: Critical masses separating the first order
region below from the crossover above in the (𝑎𝑚, 𝑁 𝑓 )
plane. Here we give a direct comparison between the
𝜇𝑖 = 0.81𝜋𝑇/3 and 𝜇𝑖 = 0 results.
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Figure 7: Detailed comparison between the results
from 𝜇𝑖 = 0.81𝜋𝑇/3 and 𝜇𝑖 = 0 in the (𝑎𝑚, 𝑁 𝑓 ) plane
for 𝑁𝜏 = 6.

the size of the first-order region on both the lattice cutoff 𝑎 and 𝜇𝑖 . Nevertheless, a similar tricritical
scaling is observed when extrapolating to the chiral limit for non-zero density, and it is shown in
detail for 𝑁𝜏 = 6 in figure 7.

A translation of these data can be provided in the ((𝑎𝑚)2/5, 𝑎𝑇) plane in figure 8. In this case
the critical masses along the y-axis are scaled to represent the tricritical scaling field according to

𝑎𝑚(𝑁𝜏 , 𝑁 𝑓 , 𝜇𝑖)2/5 ≈ A1(𝑁 𝑓 , 𝜇𝑖) (𝑎𝑇 − 𝑎𝑇tric) + A2(𝑁 𝑓 , 𝜇𝑖) (𝑎𝑇 − 𝑎𝑇tric)2, (11)

in analogy to equation (3). This clearly suggests the presence of a finite 𝑎𝑇tric(𝑁 𝑓 ) along the x-axis,
which implies the absence of first-order regions in the continuum limit, as for 𝜇𝑖 = 0 in figure 3.
A comparison between zero and finite 𝜇𝑖 is given in figure 9, for 𝑁 𝑓 = 4.0 and 𝑁 𝑓 = 5.0. The
trend for both cases is the same, except for a difference in the shape of the fitting functions, due to
the dependence of equation (11) on the parameter 𝜇𝑖 . A similar observation has been made in the
Roberge-Weiss plane [26].

4. Conclusions

We have shown first results on the fate of the first-order chiral transition region, which is
observed for unimproved staggered fermions with imaginary chemical potential on coarse lattices,
as a function of the number of degenerate quark flavours and the lattice spacing. In complete
analogy to a previous study at zero density [7], we observe a strengthening of the chiral transition
with increasing number of quark flavours and with increasing lattice spacing. Conversely, our
preliminary data are fully consistent with the chiral first-order transition terminating at some
tricritical 𝑁 tric

𝜏 (𝑁 𝑓 ), which implies that the corresponding first-order transition is a cutoff effect
and not connected to the continuum limit, just as at zero density. In the extended Columbia plot
in figure 4, the entire critical surface, at least for zero and imaginary chemical potential, appears

6
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Figure 8: The scaled critical masses as functions
of the lattice spacing for 𝑁 𝑓 = 3.6, 4.0, 4.5, 5.0 and
𝜇𝑖 = 0.81𝜋𝑇/3.

0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

N−1
τ = aT

(a
m
)2

/
5

Nf = 4.0, µi = 0.81πT/3

Nf = 5.0, µi = 0.81πT/3

Nf = 4.0, µi = 0

Nf = 5.0, µi = 0

Figure 9: Comparison of the results from 𝜇𝑖 = 0 and
𝜇𝑖 = 0.81𝜋𝑇/3 for 𝑁 𝑓 = 4.0, 5.0. The dashed line
for 𝑁 𝑓 = 4.0 and 𝜇𝑖 = 0 is to guide the eye

to move towards the zero mass limit as the continuum is approached, as indicated by the arrows.
Note that this is also fully consistent with recent simulations of improved staggered fermions in the
Roberge-Weiss plane, where no first-order transition could be seen at all for 𝑚𝜋 > 40 MeV [27, 28].

5. Acknowledgements

We thank the staff of the VIRGO cluster at GSI Darmstadt, where all simulations have been
performed. The authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) through the CRC-TR 211 ’Strong-interaction matter under extreme
conditions’– project number 315477589 – TRR 211, and by the Helmholtz Graduate School for
Hadron and Ion Research (HGS-HIRe) .

References

[1] R. D. Pisarski and F. Wilczek, Remarks on the chiral phase transition in chromodynamics
Phys. Rev. D 29, 338(R) (1984)

[2] F. R. Brown, F. P. Butler, H. Chen, N. H. Christ, Z. Dong, W. Schaffer, L. I. Unger and A.
Vaccarino, On the existence of a phase transition for QCD with three light quarks, Phys. Rev.
Lett. 65, 2491(1990)

[3] J. N. Guenther, Overview of the QCD phase diagram, Eur. Phys. J. A 57, 136 (2021)

[4] A. Lahiri, Aspects of finite temperature QCD towards the chiral limit, PoS LATTICE2021
(2022) [arXiv:2112.08164v1 [hep-lat]]

[5] O. Philipsen, Lattice Constraints on the QCD Chiral Phase Transition at Finite Temperature
and Baryon Density, Symmetry (2021) 13

7

https://link.aps.org/doi/10.1103/PhysRevD.29.338
https://doi.org/10.1103/PhysRevLett.65.2491
https://doi.org/10.1103/PhysRevLett.65.2491
https://doi.org/10.1140/epja/s10050-021-00354-6
10.22323/1.396.0003
10.22323/1.396.0003
https://www.mdpi.com/2073-8994/13/11/2079


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
7
2

Chiral phase transition for imaginary baryon chemical potential Alfredo D’Ambrosio

[6] F. Cuteri, O. Philipsen and A. Sciarra, QCD chiral phase transition from noninteger numbers
of flavors, Phys. Rev. D 97 (2018)

[7] F. Cuteri, O. Philipsen, A. Sciarra, On the order of the QCD chiral phase transition for different
numbers of quark flavours , J. High Energ. Phys. (2021) 141 [arXiv:2107.12739 ]

[8] A. Roberge, N. Weiss, Gauge theories with imaginary chemical potential and the phases of
QCD, Nuclear Physics B 275 734–745 (1986)

[9] P. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary
chemical potential, Nucl. Phys. B 642 (2002) 290-306

[10] P. de Forcrand, O. Philipsen, The QCD Phase Diagram for Three Degenerate Flavors and
Small Baryon Density, Nucl. Phys. B673 (2003) 170

[11] P. de Forcrand, O. Philipsen, The chiral critical line of 𝑁 𝑓 = 2 + 1 QCD at zero and non-zero
baryon density, J. High Energy Phys. (2007) 0701, 077

[12] P. de Forcrand, O. Philipsen, The chiral critical point of 𝑁 𝑓 = 3 QCD at finite density to the
order (𝜇/𝑇)4, J. High Energy Phys. (2008) 11, 012

[13] P. de Forcrand, O. Philipsen, Constraining the QCD Phase Diagram by Tricritical Lines at
Imaginary Chemical Potential, Phys. Rev. Lett. (2010) 105, 152001

[14] C. Bonati, G. Cossu, M. D’Elia, and F. Sanfilippo, Roberge-Weiss endpoint in 𝑁 𝑓 = 2 QCD,
Phys. Rev. D (2011) 83, 054505

[15] C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen and F. Sanfilippo, Chiral phase transition
in two-flavor QCD from an imaginary chemical potential, Phys. Rev. D., 90 (2014)

[16] O. Philipsen and C. Pinke, Nature of the Roberge-Weiss transition in 𝑁 𝑓 = 2 QCD with Wilson
fermions, Phys. Rev. D. (2014) 89, 094504

[17] O. Philipsen and C. Pinke, The 𝑁 𝑓 = 2 QCD chiral phase transition with Wilson fermions at
zero and imaginary chemical potential, Phys. Rev. D. 93 (2016)

[18] H. W. J. Blote, E. Luĳten and J. R. Heringa, Ising Universality in Three Dimensions: A Monte
Carlo Study, J. Phys. A: Math. Gen. 28 6289 (1995)

[19] A. M. Ferrenberg and R. H. Swendsen, New Monte Carlo technique for studying phase
transitions, Phys. Rev. Lett. 63 1658 (1989)

[20] A. Pelissetto, E. Vicari, Critical phenomena and renormalization-group theory, Physics Re-
ports 368 549-727 (2002)

[21] S. Takeda, X. Jin, Y. Kuramashi, Y. Nakamura, A. Ukawa, Update on 𝑁 𝑓 = 3 finite temperature
QCD phase structure with Wilson-Clover fermion action, PoS LATTICE2016 (2017) 256

[22] O. Philipsen, C. Pinke, A. Sciarra, M. Bach, CL2QCD - Lattice QCD based on OpenCL, PoS
LATTICE2014 (2014) 038

8

https://link.aps.org/doi/10.1103/PhysRevD.97.114511
https://doi.org/10.1007/JHEP11(2021)141
https://doi.org/10.1016/0550-3213(86)90582-1
https://doi.org/10.1016/S0550-3213(02)00626-0
  https://doi.org/10.48550/arXiv.hep-lat/0307020
https://link.aps.org/doi/10.1103/PhysRevLett.105.152001
https://link.aps.org/doi/10.1103/PhysRevD.83.054505
https://link.aps.org/doi/10.1103/PhysRevD.83.054505
https://link.aps.org/doi/10.1103/PhysRevD.90.074030
https://link.aps.org/doi/10.1103/PhysRevD.89.094504
https://link.aps.org/doi/10.1103/PhysRevD.93.114507
https://doi.org/10.1088/0305-4470/28/22/007
https://doi.org/10.1103/PhysRevLett.61.2635
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1016/S0370-1573(02)00219-3
  https://doi.org/10.22323/1.256.0384 
https://doi.org/10.22323/1.214.0038 
https://doi.org/10.22323/1.214.0038 


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
7
2

Chiral phase transition for imaginary baryon chemical potential Alfredo D’Ambrosio

[23] A. Sciarra, C. Pinke, M. Bach, F. Cuteri, L. Zeidlewicz, C. Schäfer, T. Breitenfelder, C.
Czaban, S. Lottini, P. F. Depta. (2021), CL2QCD (v1.1) Zenodo

[24] M. A. Clark, A. D. Kennedy, Accelerating Dynamical-Fermion Computations Using the
Rational Hybrid Monte Carlo Algorithm with Multiple Pseudofermion Fields, Phys. Rev. Lett.
(2007) 98 [arXiv:hep-lat/0608015]

[25] Alessandro Sciarra, BaHaMAS, Zenodo (2021) BaHaMAS-0.4.0

[26] O. Philipsen, A. Sciarra, Finite size and cut-off effects on the Roberge-Weiss transition in
Nf = 2 QCD with staggered fermions, Phys. Rev. D (2020) 101, 014502

[27] C. Bonati, E. Calore, M. D’Elia, M. Mesiti, F. Negro, F. Sanfilippo, S. F. Schifano, Sebastiano
G. Silvi and R Tripiccione, Roberge-Weiss endpoint and chiral symmetry restoration in 𝑁 𝑓 =

2 + 1 QCD, Phys. Rev. D (2019) 99, 014502

[28] F. Cuteri, J. Goswami, F. Karsch, A. Lahiri, M. Neumann, O. Philipsen, C. Schmidt and
A. Sciarra, Toward the chiral phase transition in the Roberge-Weiss plane, Phys. Rev. D 106
(2022) no.1, 014510 [arXiv:2205.12707 [hep-lat]].

9

https://doi.org/10.5281/zenodo.5121917
https://doi.org/10.1103/PhysRevLett.98.051601
https://doi.org/10.1103/PhysRevLett.98.051601
https://doi.org/10.5281/zenodo.4577425
https://link.aps.org/doi/10.1103/PhysRevD.101.014502
https://link.aps.org/doi/10.1103/PhysRevD.99.014502
https://link.aps.org/doi/10.1103/PhysRevD.106.014510
https://link.aps.org/doi/10.1103/PhysRevD.106.014510

	Introduction
	Strategy
	Results
	Conclusions
	Acknowledgements

