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We study phase structure and critical point of finite-temperature QCD in the heavy-quark region
applying the hopping parameter expansion (HPE). We first study finite-size scaling on the critical
point on Nt = 4 lattices with large spatial volumes taking the leading order (LO) and the next-to-
leading order (NLO) effects of the HPE, and find that the critical scaling of the Z(2) universality
class expected around the critical point of two-flavor QCD is realized when the aspect ratio of the
lattice is larger than about 9. This enables us to determine the critical point in the thermodynamic
limit with high precisions. By a study of the convergence of the HPE, we confirm that the result
of the critical point with the LO (NLO) approximation of the HPE is fairly accurate for Nt = 4
(6), while we need to incorporate higher order effects for larger Nt . To extend the study to large
Nt lattices, we then develop a method to take the effects of higher-order terms of the HPE up to
a sufficiently high order. We report on the status of our study on Nt = 6 lattice adopting the new
method.
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1. Critical quark mass in heavy-quark QCD

Around 0.1 milli-second after the Big Bang, our Universe has experienced a phase transition
from the hot quark matter to ordinary matters such as protons and neutrons. This QCD transition
plays a decisive role in the initial condition for the generation and evolution of ordinary matters
in our Universe. The QCD transition is known to be an analytic crossover when all quark masses
are set to their physical values. Though other points in the parameter space of quark masses are
unphysical, clarification of the phase structure of QCD off the physical point is also important as
the properties at the physical point may be affected by the scaling of nearby critical points.

When all quarks are infinitely heavy, QCD tends to the SU(3) pure gauge Yang-Mills theory,
which has a first-order phase transition between the low-temperature confined phase and the high-
temperature deconfined phase. The transition can be effectively described by the Z(3) Potts model,
in which the Z(3) spin variables correspond to the Polyakov loops. When we decrease the quark
masses from infinity, because quarks act as external fields to the Z(3) spin system, this first-order
transition weakens and eventually turns into a crossover at some critical quark mass. In this paper,
we report on our recent studies of the critical quark mass in QCD with heavy quarks [1–3]. While
the first-order nature of the heavy quark limit is well established, determination of the critical quark
mass is still a delicate issue. Recent lattice studies on the location of the critical quark mass showed
that we still have strong cutoff and spatial volume dependences in the result [4–8].

We first have to remove the spatial volume dependence. A powerful way to determine the
critical point in the infinite volume limit is to study the Binder cumulant, which is designed to
remove the leading volume-dependence of the finite-size scaling (FSS) when we tune the parameter
to the critical point. Thus the point where the Binder cumulant measured with sufficiently large
spatial volumes becomes insensitive to the volume gives a good estimate of the critical point in
the infinite volume limit. In ref. [7], the Binder cumulant of the Polyakov loop was studied on
Nt = 6, 8, and 10 lattices with the spatial volumes corresponding to the aspect ratio Ns/Nt = 4–7
(10). It was reported that the high-temperature data deviate from leading FSS fits, and, even after
removing them, the crossing point of the Binder cumulant moves as we increase the spatial volume.
These procedures make the scaling analyses delicate and call for a careful estimation of systematic
errors. To identify the leading FSS more clearly, we thus decided to carry out simulations with
larger spatial volumes. To achieve high statistics with large spatial volumes, we adopt the hopping
parameter expansion (HPE) in this study. We also adopt the multi-point reweighting method to vary
coupling parameters continuously in the Binder cumulant study.

2. Lattice setup and HPE

Simulations are performed on N3
s × Nt lattice with the lattice spacing a. For each temperature

T = 1/(Nta), we measure the spatial lattice size L = Nsa in terms of the aspect ratio Ns/Nt = LT .
We adopt the standard plaquette gauge action and the standard Wilson quark action. The quark
kernel is given by

Mxy(κ f ) = δxy − κ f Bxy, with Bxy =

4∑
µ=1

[
(1 − γµ)Ux,µ δy,x+µ̂ + (1 + γµ)U†y,µ δy,x−µ̂

]
, (1)
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where x, y represent lattice sites and κ f = 1/(2am f + 8) is the hopping parameter for the f th flavor
with the bare quark mass m f . Then the quark contribution to the effective action from the f th flavor
can be expanded as

ln det M(κ f ) = Nsite

∞∑
n=1

Dnκ
n
f , Dn =

−1
Nsiten

Tr [Bn] = W(n) + L(Nt, n). (2)

Here, non-vanishing contributions to Tr [Bn] are given by closed loops of the hopping term B
with the length n, which are classified to contributions of Wilson-type loops W(n) and those of
Polyakov-type loops L(Nt, n). The latter can be further decomposed as L(Nt, n) =

∑
m Lm(Nt, n)

where m is the winding number in the temporal direction. In the following, we mainly consider the
case of degenerate Nf flavors, though generalization to non-degenerate cases is straightforward.

To the leading order (LO) of the Wilson-type and the Polyakov-type contributions, we have

W(4) κ4 = 288 κ4 P̂, L(Nt, Nt ) κ
Nt =

12
Nt

2Nt κNtRe Ω̂, (3)

respectively, where P̂ is the plaquette and Ω̂ is the Polyakov loop, both averaged over space-time
position on each configuration and normalized such that they take their maximum value 1 when we
set all link variables to unity1. Similarly, to the next-to-leading order (NLO), W(6) is given in terms
of length-6 Wilson-type loops and L(Nt, Nt + 2) is given in terms of bent Polyakov loops of length
Nt + 2. See [1, 2] for details.

In this study, we incorporate the LO contributions in the configuration generation. Effects of
W(4) can be absorbed simply by shifting the gauge coupling parameter: β → β∗ = β + 48Nf κ

4.
The Polyakov-loop contribution L(Nt, Nt ) induces the term

N3
s λRe Ω̂ (4)

in the effective action, where λ = 48Nf Nt κ
Nt for Nt = 4 and 128Nf Nt κ

Nt for Nt = 6 [2]. This
term can be incorporated in the parallel pseudo-heat-bath simulation algorithm and thus can be
simulatedwithout increasing the simulation cost much from the quenchedQCD simulation. We then
incorporate the NLO effects through the multi-point reweighting procedure in the measurements.
See [1] for details. Note that, to the LO approximation, we can directly generate configurations at
finite λ. We find that this helps much to remove the overlap problem in the reweighting method,
which is quite severe on large lattices as study in this paper.

3. Results at Nt = 4 [1]

Because simulation with large spatial volumes is costly, we first revisit the case of Nt = 4 [1].
We perform simulations at several β’s and κ’s (λ’s) around the transition line on lattices with spatial
lattice sizes Ns = 24, 32, 36, 40, and 48, corresponding to the aspect ratio Ns/Nt = LT = 6–12.
Using about 106 configurations at each simulation point, we compute the Binder cumulant for the
real part of the Polyakov loop Ω̂:

BΩ4 =
〈Ω4

R〉c

〈Ω2
R〉

2
c
+ 3, ΩR = Re Ω̂ =

1
NcN3

s

∑
®x

Re trC

[
U®x,4U®x+4̂,4U®x+2·4̂,4 · · ·U®x+(Nt−1)·4̂,4

]
, (5)

1 We use the term “LO” in the sense of Eq. (3), i.e., the LO Polyakov-type contribution is O(κNt ).
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Figure 1: Binder cumulant BΩ4 on Nt = 4 lattices at five aspect ratios LT = Ns/Nt [1]. The statistical
errors are shown by the shaded area. Terms up to the NLO of HPE are incorporated. The right panel is an
enlargement of the left panel around the crossing point (the dotted rectangle region). The points in the right
panel with error bars show the results of a FSS fit. (Thin symbols with pale colors are for alternative choices
of λ in the fit. See [1] for fitting and error estimation details.)

with 〈· · · 〉c the cumulants. Adopting the multi-point reweighting method, we first determine the
transition line in the (β, λ) plane as the minimum point of BΩ4 for each λ, and then plot BΩ4 on the
transition line as continuous function of λ, as shown in Fig. 1. The right panel is an enlargement
of the left panel around the crossing point. Note that the precision is much improved over previous
studies.

We find that, with the present high precision, BΩ4 crosses at a point only when LT ≥ 9. To
determine the crossing point, we fit the data by a FSS ansatz, BΩ4 (λ, LT) = b4 + c(λ − λc)(LT)1/ν,
where b4, λc, ν, c are the fit parameters. The results of the fits using various ranges of LT are shown
by thick symbols in the right panel. We find λc = 0.00503(14)(2) with b4 = 1.630(24)(2) and
ν = 0.614(48), to be compared with the 3d Z(2) universality predictions b4 ' 1.604 and ν ' 0.630.
This λc corresponds to κc = 0.0602(4) for Nf = 2.

4. Scope and convergence of HPE [2]

In the study of critical point κc for Nt = 4 in the previous section, we confirm that the shift
of κc due to the NLO term is small (≈ 2.6%), suggesting that LO and NLO approximations are
fairly accurate in this case [1]. On the other hand, κc is known to become larger when we increase
Nt towards the continuum limit. Therefore, before extending the study to larger Nt , we study the
accuracy of the HPE.

We first note that, in the HPE of Eq.(2), the Wilson-type and the Polyakov-type loop operators
take their maximum values when we set all link variables to unity. Therefore, the worst convergent
case of the HPE is provided by setting the link variables to unity. We denote W(n) and Lm(Nt, n) in
this case as W0(n) and L0

m(Nt, n). Because the dependence on the gauge configuration is removed
in this case, we can calculate W0(n) and L0

m(Nt, n) analytically up to high orders [2]. In Fig. 2, we
show results of the convergence radius for

∑
n W0(n) κn and

∑
n L0(Nt, n) κn up to n = 120 and 100,

respectively. We find that they approach κ = 1/8 in the limit n → ∞. We can show this also by
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Figure 2: Convergence radius of the HPE for the worst convergent case [2]. The left panel shows the
d’Alembert’s radius κdA(W0; n) =

√��W0(n − 2)/W0(n)
�� (red symbols) and the Cauchy-Hadamard’s radius

κCH(W0; n) =
��W0(n)

��−1/n (blue symbols) for
∑

n W0(n) κn. The horizontal dashed line represents the
chiral limit κ = 1/8 for free Wilson fermions. The right panel shows the Cauchy-Hadamard’s radius
κCH(L0; n) =

��L0(Nt, n)
��−1/n for

∑
n L0(Nt, n) κn (colored symbols with Nt -dependent colors), together with

κCH(W0; n) (black symbols). The inset in the right panel is a close-up of the range n = 32–100.
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Figure 3: Relative deviation from the exact result of terms in the quark effective action when we truncate
the HPE at finite order nmax, in the worst convergent case. Left panel is the results for the Wilson-type term∑∞

n W0(n) κn. Central and right panels are for the Polyakov-type term
∑∞

n L0(Nt, n) κn at Nt = 4 and 6,
respectively. Results at other Nt ’s are similar. These figures are reproduced using the data of [2].

an analytic calculation of det M(κ) itself in this case. This result is understandable because we just
have free Wilson quarks when we set the link variables to unity.

This means that the HPE is reliable up to the chiral limit when terms up to a sufficiently high
order are incorporated. Here, to which order we need to incorporate depends on the value of κ
we study and on the precision we require. In the left panel of Fig. 3, we show relative deviation
from the exact result of Wilson-type contribution

∑∞
n W0(n)κn when we truncate

∑
n at finite nmax.

The red curve is for the LO approximation (nmax = 4), and the blue curve the NLO approximation
(nmax = 6). Results for the Polyakov-type contribution are similar, as shown in the central and right
panels. These deviations give the upper bounds of the truncation error in the real case of actual
gauge configurations. From these figures, we see that, around the critical point κc = 0.0602(4) for
Nt = 4, LO may have at worst ≈ 10% systematic error due to the truncation, while NLO will help
us in reducing the error smaller than 1–2%. Around κc = 0.0877(9) for Nt = 6 [7], NLO is required
to ensure accuracy better than about 95%, and around κc = 0.1135(8) for Nt = 8 [7], NNLO is

5
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Figure 4: Double distributions of L(Nt, n)/L0(Nt, n) and Re Ω̂ obtained on 323×Nt lattices. Left and central
panels show the results for n = 8 and 12 on the Nt = 6 lattice, and the right panel for n = 12 on the Nt = 8
lattice. The blue and red symbols are the data obtained at β slightly below and above the transition point.
The green lines are the results of linear fits. See [2] for details.

required to achieve a similar accuracy.

5. Effective method to incorporate high orders of HPE [2]

As the number of relevant loops increases exponentially with n, calculation of high order terms
becomes quickly tedious with increasing n. In Ref. [2], we thus developed an effective method to
incorporate expansion terms up to high orders by extending the idea of the effective NLOmethod of
[6]. Our basic observation is the strong correlation of Wilson-type and Polyakov-type loops among
different n.

We developed a method to separately evaluate W(n) and Lm(Nt, n) with general gauge con-
figurations by combining the results of Dn with various twisted boundary conditions, where Dn

itself can be evaluated by the noise method: Tr [Bn] ≈ 〈〈η†Bnη〉〉η with η the noise vector. Using
configurations generated in the heavy quark limit on 323 × Nt lattices with Nt = 6 and 8, we mea-
sure W(n) and Lm(Nt, n) around the transition point up to n = 20. Figure 4 shows typical double
distributions of L(Nt, , n) and Re Ω̂. Strong linear correlation is visible up to n = 20. We find that
W(n) also shows similar linear correlation with the plaquette, though the correlation is weaker than
the Polyakov-type terms.

These suggest an approximation

L(Nt, n) ≈ L0(Nt, n) cn Re Ω̂ , W(n) ≈ W0(n)
(
dnP̂ + fn

)
, (6)

where the coefficients cn, dn and fn are obtained by linear fits of the double distributions, and our
results of them up to n = 20 together with the values of L0(Nt, n) and W0(n) are given in [2]. Note
that this approximation can be easily implemented in our LO configuration generation algorithm by
just shifting the coupling parameters as

λ −→ λ∗ = Nf Nt

nmax∑
n=4

L0(Nt, n) cnκn, β −→ β∗ = β +
1
6

Nf

nmax∑
n=4

W0(n)dnκn. (7)

Using Eq. (6), we can also translate results of the critical point etc. with LO or NLO approximation
to those effectively incorporating further higher order effects.

6
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Figure 5: Preliminary results of the Binder cumulant BΩ4 to the NLO of HPE, obtained on Nt = 6 lattices at
six aspect ratios LT = Ns/Nt = 6, · · · , 12 . The right panel is an enlargement of the left panel around the
crossing point.

6. Preliminary results at Nt = 6

We are now extending our study to Nt = 6 by generating configurations on N3
s × 6 lattices with

the aspect ratio Ns/Nt = LT = 6, 7, 8, 9, 10 and 12, i.e., Ns = 36, · · · , 72. Our preliminary results
of BΩ4 using about 106 configurations at each simulation point are shown in Fig. 5. We see that,
while the data at Ns/Nt ≤ 8 are clearly off the finite size scaling region, crossing points of the data
at Ns/Nt ≥ 9 are overlapping within the present errors. We also note that data at Ns/Nt = 6–8 show
larger violation of the finite size scaling than those on the Nt = 4 lattices — we may need larger
Ns/Nt than the case of Nt = 4 to extract the large volume limit. To identify the volume dependence
more clearly, we are performing simulation at Ns/Nt = 15.

Assuming that the data at Ns/Nt ≥ 9 are in the scaling region, we obtain λc ∼ 0.00098–0.00104
in the NLO approximation, which correspond to κc ∼ 0.093-0.094 for Nf = 2. Incorporating the
effect of higher order terms up to n = 20 using Eq. (6), we then obtain κc ∼ 0.091, to be compared
with κc = 0.0877(9) by a full QCD simulation on lattices with Ns/Nt = 4–7 [7].

7. Summary

We studied the critical point of finite-temperature QCD in the heavy quark region on lattices
with large spatial volumes. To carry out high-statistic simulations with large spatial volumes, we
adopt the hopping parameter expansion (HPE).We also adopt the multi-point reweightingmethod to
continuously vary the coupling parameters in the scaling study around the critical point. We include
the leading order (LO) terms of the HPE in the configuration generation to solve the overlap problem
of the reweighting method, and take the next-leading order (NLO) terms in the measurements by
reweighting. From a study of the Binder cumulant on Nt = 4 lattices with large spatial volumes, we
find that the finite size scaling around the critical point is realized only when the spatial size is quite
large – in terms of the aspect ratio, LT = Ns/Nt ≥ 9 is required to our precision, where T is the
transition temperature in this case. Scaling fit using data on large lattices enabled us to determine
the critical point in the thermodynamic limit with high precisions. We found κc = 0.0602(4) for

7
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Nf = 2 QCD with the Binder cumulant and the critical exponent consistent with the expected Z(2)
universality class.

To confirm the validity of the HPE, we then studied the convergence radius in the worst
convergent case of the HPE. We found that the HPE is reliable up to the chiral limit when terms up
to a sufficiently high order are incorporated. From a study of the truncation error of the HPE, we
confirmed that, around the critical point, the LO (NLO) approximation of the HPE is fairly accurate
for Nt = 4 (6), while we need to incorporate higher order effects for larger Nt . To extend the study
to large Nt lattices, we thus developed a method to take higher-order terms up to a sufficiently high
order.

Finally, we reported on the status of our current project to determine κc for Nt = 6. We found
that the violation of the finite size scaling is larger than the case of Nt = 4. Our preliminary result
for the critical point in Nf = 2 QCD, estimated by the crossing point of the Binder cumulant on
Ns/Nt = 9–12 lattices, is κc ∼ 0.093-0.094 in the NLO approximation. Using the effective method
we developed, this corresponds to κc ∼ 0.091 when we incorporate the effect of higher order terms
of the HPE up to the 20th order. To identify the volume dependence more clearly, we are performing
simulation at Ns/Nt = 15.

It is easy to generalize our effective method to QCD at non-zero densities. Study towards this
direction is also in progress, besides investigations of various thermodynamic quantities using the
SFtX method based on the gradient flow [9, 10].
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