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1. Introduction

Despite numerous efforts the determination of the phase diagram of QCD is still an ongoing
research task. This is due to the sign problem associated to the evaluation of lattice QCD (LQCD)
at non-zero chemical potential. To tackle this problem, dimensionally reduced effective theories of
LQCD have been derived using the standard Wilson lattice action at arbitrary chemical potential [1,
2]. The derivation involves a combined expansion in the lattice gauge coupling 𝛽 and the hopping
parameter 𝜅. The degrees of freedom of such theories are Polyakov loops, which allows for cheaper
simulations than the mother theory [3], as well as analytical treatments [4, 5]. On the downside, the
evaluation of the effective theories is complicated by long-range and multipoint interaction terms
appearing beyond leading order in the expansion parameters.

Moving away from the heavy quark limit, the long-range and multipoint interaction terms start
to give important contributions to the effective actions. A well-known technique to deal with such
scenarios is the mean field approximation, which can be expected to give accurate results, if the
interactions become long-range. Further, mean field approximations have already been applied
successfully to effective Polyakov loop models in earlier works, also for the case of non-vanishing
chemical potential (see e.g. [6–8]). Therefore, a promising way of extending these works is the
treatment of the effective theories within this framework.

Applied to the effective actions considered in this work, the linearization in the fluctuations
around the mean fields (or, equivalently, around the saddle points) implies a loss of the non-linear
dependence of the actions on the Polyakov loops 𝐿x and 𝐿∗

x. Here, we will find that a more
appropriate treatment of local fluctuations will solve this qualitative discrepancy and, consequently,
improve the accuracy of the mean field approximation.

2. Overview over the effective theories

Starting with the Wilson gauge action 𝑆𝐺 with gauge coupling 𝛽, and Wilson-Dirac operator
𝑄 with hopping parameter 𝜅, the effective theories are derived by integrating out the Grassmann
fields and spatial link variables [3],

𝑍 =

∫
[d𝑈𝜇]𝑒−𝑆𝐺 [𝑈𝜇 ] det𝑄 [𝑈𝜇] =

∫
[d𝑈0]𝑒−𝑆

eff [𝑈0 ] ,

𝑆eff [𝑈0] = −ln
∫

[d𝑈𝑖]𝑒−𝑆𝐺 [𝑈0,𝑈𝑖 ] det𝑄 [𝑈0,𝑈𝑖] = 𝑆eff
G + 𝑆stat + 𝑆eff

kin , (1)

where det𝑄(𝑈𝜇) is the quark determinant and 𝑆eff
G , 𝑆stat and 𝑆eff

kin are the gauge, static quark and
kinetic quark effective action, respectively. Due to gauge invariance the effective action is a
functional of Polyakov loops 𝑆eff [𝑈0] = 𝑆eff [𝑊] with 𝑊x :=

∏𝑁𝜏−1
𝜏=0 𝑈0(x, 𝜏) [1]. Because, in

practice, the spatial link integration cannot be performed exactly, a combined strong coupling and
hopping parameter expansion is performed as discussed in the two following subsections.

2.1 The pure gauge effective action

The strong coupling expansion is realised by combining a character expansion of the plaquette
action with the linked cluster theorem. Then, the spatial link integrals can be performed. After
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deriving corrections to the leading order contribution of the expansion and applying resummation
steps, the pure gauge effective action is given by [1, 2]

𝑆G, eff = −
∑︁
⟨x,y⟩

ln
(
1 + 𝜆1𝐿x𝐿

∗
y + 𝜆1𝐿y𝐿

∗
x

)
with 𝐿x := Tr𝑊x. (2)

The coupling 𝜆1(𝛽, 𝑁𝜏) depends on the couplings of the mother theory, which can be expressed
analytically using the fundamental coefficients of the character expansion 𝑢(𝛽), 𝜆1(𝛽, 𝑁𝜏) =

𝜆1(𝑢(𝛽), 𝑁𝜏). Note, that further corrections to (2) have been derived in previous works, implying
long-range interactions and interactions between higher representations to appear in 𝑆eff

G [1].

2.2 The quark effective action

For the derivation of the quark effective action, the quark determinant det𝑄 is separated into
the static det𝑄stat and the kinetic det𝑄kin contribution, det𝑄 = det𝑄stat det𝑄kin. The former can be
evaluated exactly for 𝑁 𝑓 degenerate quark flavours and does not depend on spatial link variables [3],

det𝑄stat =
∏

x
det

(
1 + ℎ1𝑊x

)2𝑁 𝑓

det
(
1 + ℎ̄1𝑊

†
x

)2𝑁 𝑓

:=
∏

x
det𝑄loc

stat(𝑊x) = 𝑒−𝑆stat , (3)

with ℎ1 = (2𝜅)𝑁𝜏 𝑒𝑁𝜏𝑎𝜇 and ℎ̄1 = (2𝜅)𝑁𝜏 𝑒−𝑁𝜏𝑎𝜇.
The kinetic quark determinant describes the spatial propagation of quarks and, consequently,

has to be expanded in 𝜅 to perform the spatial link integration. This is employed by combining the
trace-log identity det(·) = exp Tr ln(·) with a Taylor series expansion of the exponential function
and the logarithm. Afterwards, resummation techniques are applied and the kinetic quark effective
action 𝑆eff

kin is obtained to the desired order in the hopping parameter. It is expressed in terms of
rational functions of temporal Wilson lines,

𝑊𝑛𝑚�̄��̄�(𝑊x) = Tr
(ℎ1𝑊x)𝑚

(1 + ℎ1𝑊x)𝑛
( ℎ̄1𝑊

†
x )�̄�

(1 + ℎ̄1𝑊
†
x ) �̄�

, 𝑊±
𝑛𝑚�̄��̄� = 𝑊𝑛𝑚00 ±𝑊00�̄��̄� , (4)

which can also be represented in terms of the Polyakov loop [3, 4]. To leading order in 𝜅 the
effective kinetic quark action 𝑆kin, eff reads [2–4]

𝑆eff
kin = 2ℎ2

∑︁
⟨x,y⟩

𝑊−
1111(𝑊x)𝑊−

1111(𝑊y) with ℎ2 = 𝑁 𝑓 𝑁𝜏𝜅
2/𝑁𝑐 . (5)

At O(𝜅2𝑛) the kinetic quark determinant implies couplings in the effective theories between lattice
sites, that can be connected by closed paths of a Manhattan distance up to 2𝑛. Generally, the
effective actions can be parameterised by

𝑆eff
kin =

∑︁
x

∑︁
𝑠

ℎ𝑠

∏
Δx∈𝑠

𝑊𝑠Δx (𝑊x+Δx), (6)

where the sum over 𝑠 corresponds to a sum over all such closed paths and the ℎ𝑠 are the couplings
of the effective theories. The product over the Δx ∈ 𝑠 runs over all positions on the path 𝑠 relative
to its base point x and 𝑊𝑠Δx represents sums and products of the fractional Wilson lines (4) [3, 4].

By combining the strong coupling and hopping parameter expansion the couplings of the
effective theories receive corrections and additional interaction terms appear, which are, however,
always of the same form as described in this section. The effective actions are known to O(𝜅4) [3]
and in the cold and dense limit to O(𝜅8) [4].
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3. Mean field treatment of the effective theories

A standard technique to perform mean field approximations is realised by introducing mean
fields 𝑙 and 𝑙 for the field variables 𝐿x and 𝐿∗

x, respectively, and expanding the action around
vanishing fluctuations 𝛿𝐿x = 𝐿x − 𝑙 and 𝛿𝐿∗

x = 𝐿∗
x − 𝑙 to leading order. Alternatively, mean

field approximations can be thought of as leading order saddle point approximations. There, the
equations determining the saddle points are equivalent to the self-consistency equations obtained
from the former technique [9]. A third way of applying mean field approximations is via the
Bogoliubov inequality (see e.g. [10]). As this approach relies on the probabilistic interpretation of
the Boltzmann weight, the sign problem prohibits its application at non-zero chemical potential.

In the following two subsections mean field approximations will be applied to the effective
theories including static and dynamical quarks, respectively.

3.1 Mean field approximation in the static quark limit

To present the general procedure of our mean field treatment, we consider the effective theory
to leading order in the expansion parameters 𝛽 and 𝜅, i.e. the pure gauge effective action (2) with
the static quark determinant (3),

𝑍 =

∫
[d𝑊x]

∏
x

det𝑄loc
stat(𝑊x) exp ©«

∑︁
⟨x,y⟩

ln
(
1 + 𝜆1𝐿x𝐿

∗
y + 𝜆1𝐿y𝐿

∗
x

)ª®¬ . (7)

To perform the mean field approximation using the saddle point approximation, while treating local
fluctuations exactly, the nearest-neighbour interaction is written as a power series in the Re(𝐿) and
Im(𝐿) [9],

ln
(
1 + 𝜆1𝐿x𝐿

∗
y + 𝜆1𝐿y𝐿

∗
x

)
=:

∑︁
𝑛1,𝑚1,𝑛2,𝑚2

Re(𝐿x)𝑛1 Im(𝐿x)𝑚1 𝐼𝑛1,𝑚1,𝑛2,𝑚2 Re(𝐿y)𝑛2 Im(𝐿y)𝑚2 . (8)

By introducing the auxiliary variables 𝜙𝑛𝑚
x and Φ𝑛𝑚

x and using the relations∫ ∞

−∞
d𝜙𝑛𝑚

x 𝛿
(
𝜙𝑛𝑚

x − Re (𝐿x)𝑛 Im(𝐿x)𝑚
)

=
1

2𝜋𝑖

∫ 𝑖∞

−𝑖∞
dΦ𝑛𝑚

x

∫ ∞

−∞
d𝜙𝑛𝑚

x exp
(
Φ𝑛𝑚

x (𝜙𝑛𝑚
x − Re (𝐿x)𝑛 Im(𝐿x)𝑚)

)
(9)

the partition function can be rewritten exactly [9],

𝑍 =
1

(2𝜋𝑖)2𝑉

∫
[dΦ𝑛𝑚

x ]
∫

[d𝜙𝑛𝑚
x ] exp ©«

∑︁
⟨x,y⟩

∑︁
𝑛1,𝑚1,𝑛2,𝑚2

𝜙
𝑛1𝑚1
x 𝐼𝑛1,𝑚1,𝑛2,𝑚2𝜙

𝑛2𝑚2
y

+
∑︁

x,𝑛,𝑚
Φ𝑛𝑚

x 𝜙𝑛𝑚
x +

∑︁
x

ln𝑧x

)
, (10)

with 𝑧x =

∫
d𝑈 det𝑄loc

stat(𝑈) exp

(
−

∑︁
𝑛,𝑚

Φ𝑛𝑚
x Re (𝐿)𝑛 Im(𝐿)𝑚

)
. (11)

4
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The path integral is now performed using the saddle point approximation, where terms quadratic in
non-local fluctuations around the saddle point, that maximises the partition function, are neglected.
Consequently, the partition function factorises [9]. The set of the infinitely many coupled saddle
point equations can be summarised in a single self-consistency relation for a mean field interaction
𝐼 (𝜙, 𝜙′) for arbitrary values of 𝜙 and 𝜙′,

𝑍 = 𝑧𝑉mf, with 𝑧mf = 𝑒−𝑑⟨𝐼 (𝐿,𝐿
∗ ) ⟩mf

∫
d𝑊 det𝑄loc

stat(𝑊)𝑒2𝑑𝐼 (𝐿,𝐿∗ ) , (12)

𝐼 (𝜙, 𝜙′) = ⟨ln (1 + 𝜆1𝜙
′𝐿 + 𝜆1𝜙𝐿

∗)⟩mf , (13)

where 𝑉 is the spatial volume of the lattice and 𝑑 is the number of spatial dimensions.
Similar to before one can now introduce auxiliary variables for 𝐿 and 𝐿∗, respectively, and

perform another saddle point approximation, where fluctuations of the static determinant and the
mean field interaction 𝐼 can be resummed. This allows to solve for 𝐼 (𝜙, 𝜙′),

𝐼 (𝜙, 𝜙′) = ln
(
1 + 𝜆1𝜙

′𝑙 + 𝜆1𝜙𝑙
)
, (14)

in terms of two mean fields 𝑙 and 𝑙, that satisfy the saddle point relations

𝜆1𝑙

1 + 2𝜆1𝑙𝑙
=

〈
𝜆1𝐿

∗

1 + 𝜆1𝐿∗𝑙 + 𝜆1𝐿𝑙

〉
mf

and
𝜆1𝑙

1 + 2𝜆1𝑙𝑙
=

〈
𝜆1𝐿

1 + 𝜆1𝐿∗𝑙 + 𝜆1𝐿𝑙

〉
mf

. (15)

The free energy density 𝑓mf is then given by

𝑎4𝑁𝜏 𝑓mf = 𝑑ln(1 + 2𝜆1𝑙𝑙) − ln
∫

d𝑊 det𝑄loc
stat(𝑊)

(
1 + 𝜆1𝐿

∗𝑙 + 𝜆1𝐿𝑙
)2𝑑

. (16)

Equivalently to solving the equations (15) one can now search for the saddle point minimizing the
free energy density as a function of the mean fields. Further, at vanishing baryon chemical potential
the saddle point relations (15) are symmetric under the exchange of the mean fields and we have
𝑙 = 𝑙. Instead of searching for the saddle points of the free energy one then can look for the local
minima of 𝑓mf as a function of a single mean field [6, 9].

Note that the relations (15) imply, that the self-consistent mean fields are (in general) not
equivalent to the expectation values of the Polyakov loop, i.e. 𝑙 ≠ ⟨𝐿⟩mf and 𝑙 ≠ ⟨𝐿∗⟩mf. Only when
local fluctuations around the mean fields beyond leading order are neglected one recovers the usual
self-consistency relations, i.e. 𝑙 = ⟨𝐿⟩mf + O(𝛿𝐿2) and 𝑙 = ⟨𝐿∗⟩mf + O(𝛿𝐿2).

Without the direct use of the saddle point approximation the equations (15) and (16) can also
be derived by expressing the Polyakov loops in (7) through the mean fields and the fluctuations,
𝐿x = 𝑙 + 𝛿𝐿x and 𝐿∗

x = 𝑙 + 𝛿𝐿∗
x [10]. After neglecting terms quadratic in the fluctuations but keeping

all terms that involve only local fluctuations, i.e. terms that are proportional to 𝛿𝐿𝑛
x𝛿𝐿

∗𝑚
x , one

obtains the desired result.

3.2 Mean field approximation for kinetic quarks

A natural extension to the previous subsection is the mean field approximation of the effective
theories including contributions of dynamical quarks. For brevity, this approximation will here be
applied with the approach described in the last paragraph of the previous subsection. For this, we

5
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Figure 1: The unresummed (blue line) and resummed (orange line) self-consistent mean field as well as the
expectation value of the Polyakov loop (green line) versus the pure gauge effective coupling 𝜆1. The dashed
red line signals the critical 𝜆1 as obtained from series expansion techniques [5].

start by expressing our general Ansatz for the kinetic effective quark action (6) in terms of mean
fields and the fluctuations around them,

𝑆eff
kin =

∑︁
x

∑︁
𝑠

ℎ𝑠

∏
Δx∈𝑠

𝑊𝑠Δx (𝑙 + 𝛿𝐿x+Δx, 𝑙 + 𝛿𝐿∗
x+Δx). (17)

All the fractional temporal Wilson loops in (17) are expanded in a Taylor series around vanishing
fluctuations,

𝑊𝑠Δx (𝑙 + 𝛿𝐿x+Δx, 𝑙 + 𝛿𝐿∗
x+Δx) =

∑︁
𝑛,𝑚

𝛿𝐿𝑛
x+Δx
𝑛!

𝛿𝐿∗𝑚
x+Δx
𝑚!

× 𝜕𝑛

𝜕𝛿𝐿𝑛
x+Δx

𝜕𝑚

𝜕𝛿𝐿∗𝑚
x+Δx

𝑊𝑠Δx (𝑙 + 𝛿𝐿x+Δx, 𝑙 + 𝛿𝐿∗
x+Δx)

����
𝛿𝐿=0

. (18)

Then, terms involving fluctuations of Polyakov loops on distinct lattice sites are neglected, whereas
contributions from purely local fluctuations are resummed. Consequently, the kinetic quark effective
action in the mean field approximation maintains its non-linear dependence on the Polyakov loop,

𝑆eff
kin =

∑︁
x

∑︁
𝑠

ℎ𝑠 (1 − |𝑠 |)
∏
Δx∈𝑠

𝑊𝑠Δx (𝑙, 𝑙) +
∑︁
Δx∈𝑠

𝑊𝑠x (𝐿x, 𝐿
∗
x)

∏
Δy∈𝑠
Δy≠Δx

𝑊𝑠Δy (𝑙, 𝑙)

 + O(𝛿𝐿2). (19)

After combining (19) with the mean field approximation of the pure gauge effective action (14) and
the static determinant, the self-consistent mean fields 𝑙 and 𝑙 can be obtained by finding the saddle
points of the free energy density to the desired order in the hopping parameter.

4. Evaluation of the effective theories using the mean field framework

We can now test this framework in the context of the deconfinement transition. As a simple
test case we consider the pure gauge limit of the effective theories and compare the effects of the

6
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Figure 2: The critical gauge coupling 𝛽𝑐 obtained from the mapping of the critical pure gauge effective
coupling 𝜆1,𝑐 for 𝑁𝜏 = 2, . . . , 16 compared to results from high temperature expansion techniques (HTE) [5]
and simulation results of 4D Yang-Mills theory, taken from [11].

mean field approximation with results, that have been obtained using series expansion techniques
in reference [5].

In figure 1 the self-consistent mean fields are shown for the resummed and non-resummed
mean field approach versus the pure gauge effective coupling 𝜆1. There one observes, that the
resummation of the fluctuations reduces the deviation of the critical coupling 𝜆1,𝑐 from about 20%
(𝜆1,𝑐 = 0.152) to about 3% (𝜆1,𝑐 = 0.185) compared to the results from series expansion techniques
(𝜆1,𝑐 = 0.189) [5]. Additionally, in the same figure the expectation value of the Polyakov loop is
shown for the resummed mean field approach. Due to the added corrections to the self-consistency
relations the expectation value of the Polyakov loop and the self-consistent mean field are not
identical any more.

In figure 2 the critical gauge coupling 𝛽𝑐 obtained by mapping 𝜆1,𝑐 to the coupling of the
mother theory are compared to simulation results of 4D Yang-Mills theory for 𝑁𝜏 = 2, . . . , 16 [11].
There, one observes a partial cancellation of the uncertainties introduced by the derivation of the
effective theory and the mean field approximation. The values of the 𝛽𝑐 agree with the simulation
results within 10%.

Finally, we leave the pure gauge limit and consider the deconfinement transition line in the
heavy quark corner for three degenerate flavours of quarks, 𝑁 𝑓 = 3, and 𝑁𝜏 = 4. The kinetic quark
effective action is considered to O(𝜅4) as derived in [3]. In figure 3a the free energy density is
shown as a function of the mean field at the deconfinement transition in the pure gauge limit (blue
line), at an intermediate value of the hopping parameter (orange line), and at the critical end-point
(green line), whereas in figure 3b the deconfinement line is shown in the 𝛽-𝜅 plane. In both figures it
can be observed, that the first order transition weakens, as the hopping parameter is increased, until
it ends in a second order end-point at 𝜅CEP = 0.09957, showing a deviation of about 65% compared
to simulation results of full QCD 𝜅CEP = 0.0595 [12]. Such a large discrepancy for the second order
end-point is expected, because mean field approximations break down when the behaviour of the
system is dominated by fluctuations.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
7
9

Mean field approximation for effective theories of lattice QCD Christoph Konrad

-0.2 0.0 0.2 0.4 0.6 0.8

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

(a) The free energy density 𝑓mf versus the mean field at
the deconfinement transition for 𝑁 𝑓 = 3 and 𝑁𝜏 = 4 in
the pure gauge limit (blue line), at intermediate values of 𝜅
(orange line) and at the critical end-point (green line).
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(b) The deconfinement transition line (blue circles with
lines as a guide to the eye) in the 𝛽-𝜅 plane for 𝑁 𝑓 = 3 and
𝑁𝜏 = 4, starting in the pure gauge limit and ending in a
second order critical end-point (CEP) (orange cross).

Figure 3: The free energy density and deconfinement transition line obtained within the resummed mean
field approach using the kinetic effective quark action to O(𝜅4) for 𝑁 𝑓 = 3 and 𝑁𝜏 = 4.

5. Conclusions

In this work, mean field approximations were applied to Polyakov loop effective theories of
lattice QCD, that have been derived some time ago using a combined strong coupling and hopping
parameter expansion. Due to the non-linear nature of the effective actions of these theories a
resummation of fluctuations is used to improve the accuracy of the mean field approximation. As a
showcase of the applicability of this approach the critical endpoint of the deconfinement transition is
determined. The combined uncertainty of the effective theories and the mean field approximations
for the critical gauge coupling (𝛽𝑐) and hopping parameter (𝜅𝑐) amounts to about 15% for first order
transitions and to about 65% for the critical end-point of the deconfinement transition.
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