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1. Introduction

Bottomonium has previously been studied as a means of estimating the properties of the quark-
gluon plasma as produced in relativistic heavy-ion collisions. [1–3]. The problem of reconstructing
the spectrum of bottomonium states at non-zero temperature is an ill-posed one due to the presence of
finite uncertainties in data collected from lattice QCD simulations. This work represents one of the
latest in a collection of studies performed by the Fastsum Collaboration focussing on bottomonium
states simulated using anisotropic lattices at nonzero temperature. In the following, we build upon
the results of previous work [4] and present a discussion on the use of the Backus-Gilbert method
for reconstructing bottomonium spectra, showing how the Laplacian nature of the reconstruction
formula my be exploited to give improved resolution.

2. Lattice details

Non-relativistic QCD (NRQCD) is an effective field theory for heavy quarkonia, which approx-
imates fully relativistic QCD by expanding the Lagrangian in powers of the heavy quark velocity
[5]. One of the principal benefits of the NRQCD formulation is that the calculation of the time
evolution of the heavy quarks reduces to an initial-value problem, as the heavy quarks and antiquarks
decouple in the non-relativistic regime. This decoupling effect turns the spectral representation of
the Euclidean correlator 𝐺 (𝜏) into a Laplace transformation of the spectral density function 𝜌(𝜔):

𝐺 (𝜏;𝑇) =
∫ 𝜔max

𝜔min

𝑑𝜔

2𝜋
𝐾 (𝜏, 𝜔)𝜌(𝜔;𝑇) (1)

where 𝐾 (𝜏, 𝜔) = 𝑒−𝜔𝜏 is the temperature independent kernel function and 𝑇 = (𝑎𝜏𝑁𝜏)−1 is the
lattice temperature as a function of the temporal extent 𝑁𝜏 . In order to relate NRQCD energies to
physical energies, the reconstruction window 𝜔 ∈ [𝜔min, 𝜔max] must be additively renormalised by
the NRQCD energy shift, Δ𝐸 = 7.46GeV.

We make use of Fastsum’s Generation 2L ensembles, generated using anisotropic lattices
(𝜉 = 𝑎𝑠/𝑎𝜏 ∼ 3.5) with 2+1 flavour, clover-improved Wilson fermions using a physical 𝑠 quark and
lighter, degenerate 𝑢 and 𝑑 quarks[6]. The spatial extent of the lattice 𝑁𝑠 = 32 and the temporal
extent along with the corresponding lattice temperatures are detailed in Table 1.

𝑁𝜏 128 64 56 48 40 36 32 28 24 20

𝑇 = 1/(𝑎𝜏𝑁𝜏) [MeV] 47 95 109 127 152 169 190 217 253 304
𝑁cfg 1024 1041 1042 1123 1102 1119 1090 1031 1016 1030

Table 1: Temporal extent, corresponding lattice temperature in MeV and number of configurations for the
Fastsum Generation 2L ensembles. The double vertical line mid-table represents our value of 𝑇pc[6].

3. The Backus-Gilbert Method

The Backus-Gilbert method [7] is a reconstruction technique which extracts regularised solu-
tions from the ill-posed inverse problem by imposing constraints on the stability of its predictions
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under a change of input. Since 𝐺 (𝜏) is only known to at most O(100) but 𝜌(𝜔) is continuous
(O(1000+) points), there are theoretically an infinite number of possible spectra 𝜌 which produce
the correct 𝐺 (𝜏) within numerical errors. Backus-Gilbert attempts to estimate a solution of Eq. 1,
denoted 𝜌̂, on a point-by-point basis by constructing averaging functions 𝐴(𝜔, 𝜔0) centred about
some point 𝜔0 generated using the data kernel 𝐾 (𝜏, 𝜔):

𝜌̂(𝜔0) =
∫ 𝜔max

𝜔min

𝐴(𝜔, 𝜔0)𝜌(𝜔) 𝑑𝜔 (2)

with 𝐴(𝜔, 𝜔0) =
∑

𝜏 𝑐𝜏 (𝜔0)𝐾 (𝜏, 𝜔). In the limit 𝐴(𝜔, 𝜔0) −→ 𝛿(𝜔 − 𝜔0), we obtain a perfect
reconstrucion of the target spectrum 𝜌. It is easily seen that plugging Eq. 1 into

𝜌̂(𝜔0) =
∑︁
𝜏

𝑐𝜏 (𝜔0)𝐺 (𝜏). (3)

gives Eq. 2. The coefficients 𝑐𝜏 (𝜔0) control the shape of 𝐴(𝜔, 𝜔0) and are found by minimising
the cost function 𝐽 (𝜔0) representing the least-squares distance between the averaging function and
the delta function at 𝜔0[8]:

𝐽 (𝜔0) =
∫ 𝜔max

𝜔min

[𝐴(𝜔, 𝜔0) − 𝛿(𝜔 − 𝜔0)]2 𝑑𝜔. (4)

Setting 𝜕𝑐𝜏 𝐽 (𝜔0) = 0 reduces the problem to an inversion of a matrix-vector product:

K𝜏𝜏′ · 𝑐𝜏′ (𝜔0) = 𝐾 (𝜔0, 𝜏), where K𝜏𝜏′ =

∫ 𝜔max

𝜔min

𝐾 (𝜏, 𝜔)𝐾 (𝜏′, 𝜔)𝑑𝜔. (5)

The kernel width matrix K is near-singular (worsened by the exponential nature of the kernel)
and so must be treated by a conditioning routine before inversion. One such conditioning routine is
the addition of a small constant term to the diagonal entries in a Tikhonov-like fashion[9]:

K(𝛼) = K + 𝛼𝐼 (6)

where 𝛼 is a parameter which controls the strength of the regularisation. The benefit of such scalar
conditioning over other methods is that the coefficients 𝑐𝜏 are constructed without prior knowledge
of 𝐺 (𝜏), enabling their use in the reconstruction of any spectra obeying Eq. 1, regardless of choices
of quantum numbers, see [4].

4. Improvement via the Laplace Shift Transform

It has been previously shown [10] that, for the case of the maximum entropy method (MEM),
there exists a relationship between the choice of 𝜔min and the resolving power of the method. This
effect also occurs in the Backus-Gilbert method which shares a similar basis-function mechanism
of reconstruction as the MEM. The application of a Laplace shift transform:

𝐺′(𝜏) = 𝑒Δ·𝜏𝐺 (𝜏) L
=⇒ 𝜌′(𝜔) = 𝜌(𝜔 + Δ), (7)

where Δ > 0 shifts the spectral features closer to 𝜔min where the resolving power of the method
is improved [4] offering improved predictions for mass and width estimates. Building upon this
feature, we have opted to combine 𝜔min and the Laplace shift transform parameter Δ into a single
parameter Δ̃ = 𝜔min + Δ.
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5. Systematic analysis: Removing Δ̃ and 𝛼 dependence

There is a systematic dependence of the ground state mass 𝑀 and width Γ on the value of Δ̃
and 𝛼 which must be removed during analysis. This is illustrated in Fig. 1 where the mass (Left)
and width (Right) are shown as a function of Δ̃ for various 𝛼 values.

As can be seen, for fixed 𝛼, the mass increases and width decreases monotonically with Δ̃ due
to the resolution improvement. We also note that in the mass case, this slope approaches zero as
𝛼 → 0, indicating that the Δ̃ dependence falls away. Finally, we note that the maximum theoretical
shift occurs when Δ̃ equals the mass. This is indicated by the boundary of the hatched region in
Fig. 1 (Left)). We therefore obtain our mass estimate by firstly performing a linear extrapolation of
the mass, at fixed 𝛼, to the boundary of the hatched region, obtaining 𝑀 (𝛼). The 𝛼 dependence is
then removed by noting empirically that 𝑀 (𝛼) becomes independent of 𝛼, for small 𝛼, and so can
be fit with a constant. A bootstrap analysis produces the error estimate.

The ground state width is determined by a similar procedure. First a linear fit in Δ̃ is performed,
at fixed 𝛼, and extrapolated to the boundary region. The 𝛼 dependence is then removed in the same
manner as in the mass case. However we note that, due to the finite resolving power of the Backus
Gilbert method, the widths obtained should be considered upper bounds on the physical width of
the state.
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Figure 1: Left: Plot of the ground state mass versus the shift parameter Δ̃ for the (smeared) Υ meson over
a range of 𝛼 values. The hatched region represents the maximum possible shift, beyond which the ground
state feature falls outside of the sampling window. The red dashed line is the PDG estimate [11] and the
black dashed line represents our best estimate after extrapolating the Δ̃ and 𝛼 hyper-parameters. Right: Plot
of our estimate of the upper bound for the ground state FWHM width versus Δ̃ for the Υ meson over a range
of 𝛼 values. The black dashed line is our best estimate of the upper bound and the red band denotes its
uncertainty. The temperature used in these plots is 𝑇 = 47 MeV.

The value of 𝜔min is held fixed in this analysis (at a value of 𝜔min = −0.1𝑎−1
𝜏 ≈ 6.8GeV). We

have chosen to include all possible Euclidean times in our analysis, i.e. 0 ≤ 𝜏 < 𝑁𝜏 , because the
resolving power of Backus Gilbert method is greatest for the largest time windows.
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6. Results for the bottomonium sector: 𝜂𝑏, Υ, 𝜒𝑏1 and ℎ𝑏
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Figure 2: Comparison between new results from this work and those from [4], labelled (2021), for the mass
(left) and upper bound on the width (right). The magenta line on the left pane is the PDG estimate for the Υ
mass [11]. The red shaded band on the right pane indicates our estimate of the maximum resolving power of
the new method.

We have improved our previous results [4]) by including the Laplace shifting (see §4) and an
improved fitting analysis (see §5). In Fig. 2, we display our results for the Υ mass and width as
a function of temperature, including the results from our earlier analysis. We have also extended
our previous work by including the 𝜂𝑏, 𝜒𝑏1 and ℎ𝑏 states, with results shown in Figs. 3 and 4. For
this analysis, we restricted ourselves to data generated using smeared quark sources which have
improved overlap with the ground state over local sources. We also conducted a more rigorous
study of the dependence of the mass and width on the parameters 𝛼 and Δ̃ in an attempt to measure
their contribution to the systematic error.

In particular, in the case of the Υ mass, we wish to highlight in Fig.2 the comparison between
the results of this work and the estimates presented in [4] which appear to be contaminated by
systematics of the method, as the dependence of the the mass and width on 𝛼 was not fully
accounted for. We also note that below the pseudocritical temperature (𝑇pc = 162 MeV for our
Gen-2L ensembles[6, 12]), the experimental widths for the Υ and 𝜂𝑏 are 54.02 ± 1.25 keV and
10+4

−5 MeV respectively[11], over an order of magnitude smaller than even the minimum resolvable
width for our method (see Fig. 4). We once again reiterate that our presented values for the ground
state width represent an upper bound on the true value, and we leave an investigation into the effect
of changing the Euclidean time extent and the lower bound 𝜔min to a future study.
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Figure 3: Plots showing the estimate of the mass versus lattice temperature for select bottomonium states.
The horizontal dashed line represents the PDG estimate for the given state [11].
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Figure 4: Plots showing the estimate of the upper bound on the width versus lattice temperature for select
bottomonium states. The shaded region represents our best estimate of the resolving power of the method.
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Figure 5: Value of the energy shift Δsing (i.e. the predicted mass) which gives the most singular shifted
covariance matrix (see Eq. 9) for a variety of bottomonium channels as a function of 1/𝜏2. The covariance
matrices are defined over the time interval 0 ≤ 𝜏 < 𝜏2, and therefore the best results are obtained as 𝜏2 → ∞.
The lattice temperature is 47 MeV. The predicted masses each meson tends toward the experimental estimate
for the pseudoscalar mass. Experimental values for the meson masses are shown as horizontal lines [11].

7. Connection with Parisi-Lepage Statistical Scaling

To estimate the error in the resulting reconstruction, the uncertainty in the Euclidean correlator
Δ𝐺 (𝜏) must be combined with the Backus Gilbert coefficients 𝑐𝜏 . The uncertainty corresponding
to Eq. 3 is simply

Δ𝜌̂2 =
∑︁
𝜏,𝜏′

𝑐𝜏Cov[𝐺]𝜏,𝜏′𝑐𝜏′ (8)

where Cov[𝐺] is the covariance in 𝐺 (𝜏). Under the Laplace transformation outlined in Eq. 7, the
covariance matrix transforms as

Cov[𝐺;Δ]𝜏,𝜏′ = 𝑒Δ·𝜏Cov[𝐺]𝜏𝜏′𝑒Δ·𝜏
′

(9)

which in turn influences the spectral error Δ𝜌̂. This effect can be probed by measuring the condition
number of the resulting matrix, defined by

𝜅 (Cov[𝐺;Δ]) = 𝜎max

𝜎min
(10)

where 𝜎 are the singular values of the matrix.
It is interesting to study 𝜅 as a function of Δ and determine the value, Δsing when Cov[𝐺;Δ]

becomes singular. One may imagine that Δsing is the ground state mass of the 𝐺 (𝜏) channel.
However, as pointed out by Parisi [13] and elucidated further by Lepage [14], the covariance matrix
has a special physical significance. It can be expressed as a correlation function of the square of the
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interpolating operators of the original correlation function, 𝐺 (𝜏). Analysing this further, one finds
that the lightest state which contributes to the covariance matrix is the pseudoscalar, no matter what
state was being probed by 𝐺 (𝜏). This therefore implies that Cov[𝐺;Δ] becomes singular when
Δ = Δsing is the pseudoscalar mass (i.e. the 𝜂𝑏 mass in our case) independent of the channel.

We illustrate this in Fig. 5 where Δsing is plotted for a variety of channels. The covariance
matrix was defined over the time interval 0 ≤ 𝜏 < 𝜏2 meaning that the large time limit (where the
ground state dominates) is obtained as 𝜏2 → ∞. As can be seen, in this limit we recover the 𝜂𝑏 (i.e.
pseudoscalar) mass, thereby confirming the prediction of [13, 14].

8. Summary

We have presented results for the ground state mass and an estimate for the upper bound on the
width for several bottomonium states using smeared quark sources, showing improved resolution
compared to our previous results. We have demonstrated the ability of the Laplace shift to naively
increase the resolving power of the method, but show that is still insufficient to resolve the ground
state widths of the system. The effect of the Laplace shift transform on the covariance matrix of
the Euclidean correlation function was also studied, where the condition number of the matrix was
found to confirm Parisi-Lepage statistical scaling in the long-time limit.
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