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1. Introduction

The high temperature cross-over in quantum chromodynamics (QCD) is a highly investigated
topic in theoretical physics and particularly in the lattice community. In the cross-over region
deconfinement of the strongly interacting matter is accompanied by several other phenomena like
the restoration of the approximate chiral symmetry, localization of the lowest Dirac eigenmodes and
a rapid change in the fluctuations of the topological charge &. The latter can be observed through
the topological susceptibility

j =
〈&2〉
+4

(1)

where +4 is the Euclidean four-volume and & is the topological charge, defined in the continuum
theory as

& =
1

32c2

∫
+4

34GTr n`adf�`a�df . (2)

The quick suppression of topological fluctuations in the transition region is supported analitically
by a perturbative study of instantons [1]. This behavior of j was observed in several studies on the
lattice [2–4].

In pure SU(3) Yang-Mills theory, in contrast to full QCD deconfinement is a genuine first order
phase transition. It was shown also in this case that j falls sharply at the transition temperature
[5]. On top of this in Ref. [6] it was pointed out on ensembles with four volume +4 = 323 × 5
that j differs in the hot and cold phases at ) = )2 . Considering these results we assume that the
function j()) has a discontinuity Δj at the transition temperature which we aimed to calculate in
the continuum and infinite volume limit. We discuss our results in Sec. 4.

The value of Δj can be estimated in the following way. As the topological susceptibility
appears in the Taylor expansion of the thermodynamic potential with respect to the �%-breaking
\ parameter, we can expect, that the behaviour of j at the transition is linked to the details of the
phase diagram in the ) − \ plane. According to Refs. [7, 8] in the case of a first order transition the
curvature parameter '\ , defined as

)2 (\)
)2 (0)

= 1 + '\\2 + O(\4) (3)

is related to the latent heat Δn and the discontinuity of the topological susceptibility

Δj = 2Δn'\ . (4)

The curvature was determined in Ref. [7, 8] to be '\ = −0.0178(5) by using imaginary \ simula-
tions. Combining this with recent result of the latent heat Δn/)4

2 = 1.025(21) (27) determined in a
precision study [9] we arriwe to an estimate of the discontinuity Δj/)4

2 = −0.0365(18).
Besides j higher moments of the topological chage distribution %(&) are also related to Taylor

coefficients of the free energy density. The kurtosis of %(&) can be studied through the 12 coefficient

12()) = −
j4())

12j()) , j4 =
1
V

[〈
&4〉 − 3

〈
&2〉2]

. (5)

Studying 12()) at the transition region was proved useful as its value is related the structure of
the topological fluctuations. At low temperatures gauge fluctuations in pure SU(3) gauge theory
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are described by the instanton liquid model [10] whereas in the high temperature phase lumps of
charge become sparse and can be described by the dilute instanton gas approximation (DIGA). It
was shown that DIGA is an accurate description at temperatures as close to )2 as 1.045)2 and
1.15)2 [11, 12]. In this case the interaction between topological objects can be neglected which
means that %(&) is Skellam distribution [11]. Using this to calculate charge averages in Eq. 5
yealds to the analytical value of 12 = −1/12. At ) = 0 empirical results on the lattice indicate that
12 ≈ −0.02 [13–17], and does not depart much from this value for ) < )2 . Thus examining the
function 12()) accross the transition one can see when it departs from this empirical value and how
fast it approaches the DIGA limit. Our lattice results for 12()) and j()) are discussed in Sec. 3
after a brief introduction of the setup of lattice simulations in Sec. 2. Finally we summarize our
results in Sec. 5 and conclude.

2. Simulation details

We simulated pure SU(3) lattice gauge theory with the Symanzik improved gauge action.
Gauge ensembles were generated in the vicinity of the transition point with several gauge coupling
values using parallel tempering (for a detailed descripcion see [9]). We stored those configurations
that were generated at the crtical coupling that set with a precision of 10−3 )

)2
. In Tab. 1 we show

the number of stored configurations corresponding to lattices with different spatial volume and
temporal extent. We measured the Symanzik improved topological charge [18–20] on each gauge

#C

6 7 8 10 12
4 497478 64901 77902 40054 20604
4.5 - - 30544 - -

!) 5 20041 6524 36610 13473 -
6 67185 7875 53325 24475 -
8 30581 6677 7372 - -

Table 1: Number of gauge configurations generated at the transition point V2 . !) means the aspect ratio
and #C is the temporal extension in lattice units.

configuration:

& =
∑

<=∈{11,12}
2=<&<= with 211 = 10/3, 212 = −1/3 (6)

and &<= =
1

32c2
1

<2=2

∑
G

∑
`,a,d,f

n`adf)A (�̂`a (G;<, =)�̂df (G;<, =)), (7)

where the �̂`a (G;<, =) quantity is defined as the average of clover terms built from < × = plaquets
in the `a plane and centered at the lattice site G. We show a visual representation of �̂`a (G;<, =)
in Fig. 1. In later analysis we used the renormalized topological charge which we obtained by
introducing smearing on the gauge field via the Wilson flow [21]. The computational cost of
calculating the Wilson flow increases with the flow time C, thus we had to compromise when we
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Figure 1: An illustration from [19] of �̂`a (G;<, =) showing that it is built from the average of clover terms
with = × < plaquets.

Figure 2: Topological susceptibility calculated on lattices of aspect ratio LT=2 with different resolutions.
Data represented with filled points (of color black) are determined from the Symanzik-improved topological
charge compared to unimproved data shown as empty points (of color blue).

chose C so that it is small but large enough reduce the effects of finite lattice spacings. In practice
we analysed the dependency of j on the normalized flow time C)2

2 for lattices of aspect ratio !) = 2
which we show in Fig. 2. Results with different lattice spacings can be compared by using the
normalized topological susceptibilty j/)4

2 = ()/)2)4 〈&〉 (#4
C /+4), thus in the figures we show

this quantity from now on. Our choice is C)2
2 = 1/16 (indicated with a black vertical line) which

falls in the plateau region even for the coarsest lattice. Filled points (of black color) show results
calculated using the Symanzik-improved& and as a comparison we also show data calculated using
the unimproved & represented by empty points (of color blue).

Besides simulations at the transition point we also generated ensembles in the vicinity of the
transition 0.9 )2 < ) < 1.1 )2 by employing parallel tempering. In this case we measured & at
not only one but several temperatures thus to reduce computational costs we used stout smearing
instead of the Wilson flow as we kept the same physical smearing radius. This means that we
performed a number of stout smearings with d = 0.125. We chose a number of smearing steps such
that C/)2

2 = 1/18 = #smeard/#2
C , which means #smear = 16 for the coarsest lattice (#g = 6) and 21.7̄

steps for #g = 7, 28.4̄ for #g = 8, and 44.4̄ steps for #g = 10. As there are non integer steps we
determined & through interpolation in these cases. In Tab. 2 we show topological susceptibilities
calculated from lattices of !) = 2 by using both definitions of the renormalized charge. There is a
precise agreement in the results of the two different methods and the differences are much smaller
than the statistical error, therefore in further analyzis we neglect the systematic error coming from
the different renormalization methods.
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j/)4
2

#C Wilson flow stout smearing
6 0.11702(156) 0.11718(155)
7 0.11882(176) 0.11884(176)
8 0.11720(231) 0.11722(233)
10 0.11652(248) 0.11655(248)
12 0.11416(311) 0.11413(311)

Table 2: Topological susceptibility calculated at C/)2
2 = 1/16 at temporal extents #C = 6, 7, 8, 10, 12

via the Wilson flow (second column) compared to j calculated after stout smearing steps (third column)
corresponding to the same physical flow time.
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Figure 3: The topological susceptibility (left) and 12 coefficient (right) as functions of the normalized
temperature. Results for lattices with physical volume !) = 4 and #C = 6, 7, 8, 10 are shown in blue,
green, red and orange respectively. The continuum extrapolation, which includes statistical and systematic
uncertainties, is shown in black.

3. The susceptibility and 12()) in the transition region

We examined the temperature dependence of the quantities 12 and j in temperature range
0.9)2 < ) < 1.1)2 . In fig. 3 we show our results for the topological susceptibility j (left) and the
coefficient 12 (right) for the aspect ratio !) = 4. The colored points correspond to lattices with
#C = 6, 7, 8, 10. We carried out a continuum extrapolation for these curves that we show with black
in the figure. The continuum extrapolation was done in the following way. We first interpolated the
different curves in V with a cubic spline, then we divided the horizontal axis evenly and performed
the continuum extrapolation at each of these temperatures.

For the topological susceptibility we estimated the statistical errors of the continuum extrap-
olation by first fitting on the full data including #C = 6 lattices then excluding them in a second
fit. The statistical errors on the 12()) result on the finest lattice (403 × 10) is too large for this
estimation for 12; there all four lattices were included in the continuum limit. In Fig. 3 we also show
the corresponding ) = 0 results for j [22] and the 12() = 0) = −0.0216(15) continuum result is
from Ref. [13].

In Fig. 4 we show the volume dependence of results while we fixed the temporal extent to
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Figure 4: The topological susceptibility (left) at #C = 8 and 12 coefficient at #C = 6 (right) as functions
of the normalized temperature. Results for lattices with different physical volumes are shown with different
colors.

#C = 6 and 8 in the case of 12 (right panel) and j (left panel) respectively. As we go closer to
the infinite volume limit the slope of the j()) curve become steeper which is also an indication
that a discontinuity is to be expected in the infinite volume case. We also see that by increasing
the volume the dip of 12()) at the transition become more pronounced. This can be understood by
looking at the structure of the formula of 12. At ) = )2 the statistical weight of the cold and hot
phases are the same F2>;3 = Fℎ>C = 1/2 and simple calculation yields to

12 =
j2>;312>;32 + jℎ>C1ℎ>C2

j2>;3 + jℎ>C
+ +4

16
Δj2

j̄
(8)

where 12>;32 and 1ℎ>C2 means the value of the coefficient 12 when there are only configurations
corresponding to the cold or hot phase, Δj = j2>;3 − jℎ>C and j̄ = 1

2 j
2>;3 − 1

2 j
ℎ>C . In the infinite

volume limit the two phases coexist only at ) = )2 and 12 would be a negative Dirac delta as the
second term in Eq. 8 is proportional to the volume. In finite volume simulations the two phases
coexist with different weight factors in the vicinity of the transition, that is why we see a dip with
a finite width and depth in the right hand sides panels in Fig. 3 and Fig. 4. Further increasing the
temperature only the hot phase configurations remain and 12()) stabilizes at the prediction of the
DIGA picture.

4. The discontinuity of the topological susceptibility

We showed in the previous section that j()) suddenly drops as we approach the transition
temperature. In the thermodynamic limit we expect a discontinuity at ) = )2 , thus in this section
we focus on the transition point where both confined configurations with / (3) center symmetry
and the deconfined configurations with spontaneously broken center symmetry are present with
comparable statistical weights. The Polyakov-loop serves as an order parameter for deconfinement
in the quenched theory, thus examining its spatial average % = 1

# 3
G

∑
G %(G), where #G is the spatial

extent of the lattice, allows us to identify which phase a given configuration belongs to. Finite
volume histograms of the Polyakov-loop magniude |% | have a double peak structure which we show

6
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Figure 5: Discontinuity of j at the transition temperature of ensembles listed in Tab. 1. Results of different
lattices are projected onto the infinite volume plane (top) and the continuum plane (bottom). The blue bands
are linear (three parameter) fits of the projected data using the same parameters as in the two dimensional fit.

in the right panel of Fig. 6 together with the topological susceptibility calculated in each bin of the
histogram. We also determined the infinite volume limit of j( |% |) via a two dimensional fit of a
second degree polynomial. Considering the Polyakov-loop histogram in the infinite volume case
instead of two peaks it would be a double Dirac delta one at |% |2>;3 = 0 and the other at some finite
value of |% |ℎ>C .

The hot phase value of the Polyakov-loop |% |ℎ>C can be determined by knowing the latent heat
Δn . For this we have to examine the trace anomaly (n − 3?)/)4

2 as a function of |% |. We show
this in the left panel of Fig. 6 for #C = 8 with its infinite volume limit which we determined by
a two dimensional fit. The latent heat is the difference between trace anomaly’s value at |% | = 0
and its value at |% |ℎ>C . We can determine the latent heat using the same method as [9] at a fixed
#C . Adding this result to the trace anomaly the |% | = 0 (indicated with a solid horizolntal line) we
can read the |% |ℎ>C value (which we indicate with dashed vertical line). Then we can obtain Δj by
simply subtracting j( |% | = 0) from j( |% |ℎ>C ). We did this for different lattice resolutions but the
statistical error in this case was higher compared to the direct calculation of Δj which we discuss
in the following.

We can determineΔj directly for each finite volume ensemble by distinguishing configurations
corresponding to the hot and cold phases. A natural way to do this is to cut Polyakov-loop histograms
and at their minimum |%2 | between the two peaks. Then we consider configurations with |% | < |%2 |
to be in the cold phase and those with |% | > |%2 | to be in the hot phase. Then we can assign
topological susceptibilities corresponding to both peaks and calculate Δj by subtracting the value
of j in the cold phase from that of the hot phase. By calculating Δj for each lattice ensemble we
could extrapolate its continuum and infinite volume limit via a two dimensional fit. We illustrate
this in Fig. 6 with a linear fit on the data. On the left panel of the figure we show data projected to
the infinite volume plane and on the right panel data projected to the continuum plane together with
error bands of the linear fit. The main result for the discontinuity of the topological susceptibility is

Δj/)4
2 = −0.0344(44) (32) (9)

with the statistical and systematic errors. The systematic error has two main sources. One is coming

7
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Figure 6: Discontinuity of j at the transition temperature of ensembles listed in Tab. 1. Results of different
lattices are projected onto the infinite volume plane (top) and the continuum plane (bottom). The blue bands
are linear (three parameter) fits of the projected data using the same parameters as in the two dimensional fit.

from the chosen fit range include or excluding the smallest aspect ratio !) = 4. The other systematic
varible is the choice of the fit formula for the infinite volume and continuum extrapolations. The
j2 value of the fit was good for both a function with three parameters 5 (G, H) = 0 + 1 · G + 2 · H
(j2 = 6.3/14 and 5.7/9 depending on the other systematic variables) and another with four
parameters 6(G, H) = 0 + 1 · G + 2 · H + 3 · GH (j2 = 6/13 and 4.6/8), with G = 1/#2

C and H = 1/(!))3
respectively. Our result in Eq. ?? for the discontinuity of j()) agrees with the estimation obtained
from Eq. 4.

5. Conclusion

We examined the topological features of SU(3) gauge theory via the distribution of the topo-
logical charge in the vicinity of the finite temperature deconfining transition. The two relevant
observables are the toplogical susceptibility j and the Taylor coefficient 12 of the expansion of the
free energy density at \ = 0.

In Sec. 3 we examined the temperature dependence of these quantities. Since we used the
renormalized topological charge, by changing the resolution j()) and 12()) did not change signifi-
cantly and a continuum extrapolation could be done easily (Fig. 3. We also determined these curves
at different volumes. Increasing the volume at a fixed resolution resulted in a sharper fall of the
susceptibility at the transition temperature (left panel in Fig. 4). This supported our expectation that
the function j()) has a discontinuity at ) = )2 . In Sec. 4 we determined the discontinuity Δj at
the transition temperature. We separated the two phases by cuting the Polyakov-loop histograms at
their minima, then calculated the difference of the susceptibilities corresponding to the hot and cold
phases ensemble by ensemble. Using these data we extraplated the infinite volume and continuum
limit of Δj (see Tab. ??). Our result of the discontinuity is in agreement with the estimated value
Δj according to Eq. 4.

We analized the temperature dependence of the coefficient 12 also in Sec. 3. As we increased
the temperature toward the transition 12 started to depart from its ) = 0 empirical value 12 ≈ −0.02
and before reaching the analytical value 12 = −1/12 predicted by DIGA it fell even below that at

8
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temperatures close to the transition. This dip in 12()) become deeper and deeper as we increased
the volume (right panel in Fig. 4). This behavior can be understood through analyzing the expression
of 12 (Eq. 5). From this we can derive Eq. 8 where we can identify a volume dependent part. In
the case of phase coexistence the volume dependent term is nonzero which causes a dip in 12()) in
finite volume systems near )2 . In the infinite volume limi this suggests a negative Dirac delta at the
transition temperature where phase coexistence is present.
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