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1. Introduction

In Ref. [1], we reported a study of the 𝐻 dibaryon at the SU(3)-symmetric point where the 𝑢, 𝑑,
and 𝑠 quark masses are set to their physical average value. Working at a fixed quark mass point, we
were able to study a wide range of lattice spacings and multiple volumes. Surprisingly, we found
that the binding energy of the 𝐻 dibaryon is significantly affected by discretization effects, ranging
from about 5 MeV in the continuum to above 30 MeV on the coarsest lattice spacing.

In these proceedings, we report work in progress to study nucleon-nucleon scattering using
the same dataset — at this stage, all results should be considered preliminary. Concerning the
presence of 𝑁𝑁 bound states at heavier-than-physical pion masses, there is a disagreement in the
literature [2]: studies based on asymmetric point-source correlation functions (with a hexaquark
interpolator at the source and a baryon-baryon interpolator at the sink) find a bound deuteron and
dineutron [3–9], whereas studies using the variational method with a symmetric correlator matrix or
using HAL QCD’s potential method find no bound state [10–12]. We also note the recent variational
calculation from NPLQCD [13, 14] using ensembles previously employed in Refs. [3, 5, 9] that
appears to be consistent with [11] but did not make a final decision about the presence of a bound
state.

In the next section, we briefly summarize our methodology; in Section 3, we show the finite-
volume and nonzero-lattice-spacing spectra; in Section 4, we study the 𝑆-wave phase shifts while
neglecting higher partial waves; in Section 5, we show some higher partial waves; and in Section 6,
we analyze the mixing between 𝑆 and 𝐷 waves. Finally, we give our conclusions.

2. Lattice setup

The details of our calculation are the same as in Ref. [1]. Matrices of two-point correlation
functions were computed using the distillation method [15] on eight ensembles with nonperturba-
tively 𝑂 (𝑎)-improved Wilson-clover fermions generated by CLS [16] with 𝑚𝜋 = 𝑚𝐾 ≈ 420 MeV,
spanning six lattice spacings from 0.039 to 0.099 fm and 𝑚𝜋𝐿 varying between 4.4 and 6.4.

Our analysis of the spectra is based on finite-volume quantization conditions [17–20]. Roughly
following Ref. [21], the finite-volume spectrum is given by solutions of

det
[
𝐾̃−1(𝑝2) − 𝐵(𝑝2)

]
= 0, (1)

where 𝐾̃ contains the scattering amplitude and 𝐵 depends on the volume, ®𝑃, and irreducible
representation of the little group of ®𝑃. In this work, our preferred kinematic variable is the centre-
of-mass momentum 𝑝2 ≡ (𝐸cm/2)2 −𝑚2. Given an ansatz for 𝐾̃−1(𝑝2), we find the solutions {𝑝2}
and compare them with the observed spectrum, performing a correlated least-squares minimization.

Here we study the flavour septenvigintuplet, which lies in the symmetric product of two
octets and contains 𝑁𝑁 𝐼 = 1, and the antidecuplet, which lies in the antisymmetric product and
contains 𝑁𝑁 𝐼 = 0. Our interpolating operators are formed from linear combinations of products
of momentum-projected single-baryon interpolators and have definite flavour, total momentum
®𝑃, irrep, and two-baryon spin. Although spin is not a preserved quantum number, both the
scattering amplitude for identical baryons and the two-particle finite-volume quantization condition
are diagonal in spin, implying that spin zero and spin one can be analyzed separately. Furthermore,
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Figure 1: Antidecuplet (𝑁𝑁 𝐼 = 0) spin-one spectrum for various total momenta and irreps: 𝑝2 versus
𝐿. Red curves show noninteracting levels with a thickness proportional to the degeneracy; dashed curves
show the lowest levels for which an interpolating operator was not included. Points correspond to lattice
energy levels, with the thin outer error bar including an estimate of systematic uncertainty based on varying
the plateau fit range. Gray points indicate levels that are identified as spin zero. Horizontal lines give the
locations of thresholds and the 𝑡-channel cut.

we observe that every state overlaps largely with operators with only one spin, allowing us to sort
the states into spin zero or one.

3. Nucleon-nucleon spectra

We perform fits to ratios between diagonalized two-baryon correlators and the product of two
single-baryon correlators to obtain energy differences from noninteracting levels. The systematic
uncertainty is estimated using an alternative fit range. When we fit to the spectra to determine
scattering amplitudes, currently we follow the same approach as Ref. [1] and treat this systematic
as fully correlated, which means that it tends not to significantly reduce 𝜒2; in the future, we may
decide to change this. Also following Ref. [1], we use bootstrap to estimate statistical errors of the
scattering parameters and fit the alternative spectra to estimate part of the systematic uncertainty.

A large number of energy levels is obtained. For example, the isospin-zero spin-one case is
shown in Fig. 1, where we obtain over 300 levels. Fitting these will be a challenge and will require
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Figure 2: Septenvigintuplet (𝑁𝑁 𝐼 = 1) 1𝑆0 phase shift: 𝑝−1 tan 𝛿 versus 𝑝2, normalized with the pion mass.
Darker and more purple points and curves correspond to finer lattice spacings and pale points indicate the
two small-volume ensembles. The blue curve with error band is the continuum limit of the fit. Intersections
with the red dashed curve correspond to virtual state poles.

at minimum the 3𝑆1, 3𝐷1, 3𝐷2, and 3𝐷3 phase shifts1 together with the mixing angle for 𝐽 = 1, all
of which depend on 𝑝2 and may also be affected by lattice artifacts.

For many energy levels, a pattern is visible across the different ensembles similar to what
was observed for the 𝐻 dibaryon: coarser ensembles produce lower-lying energies, generally
corresponding to a stronger attraction. The long-sought-after splitting between the ground states in
the A2 and E irreps in frame (0, 0, 1) is also evident: this is a clear signal of mixing between 3𝑆1

and 3𝐷1 [22].

4. 𝑺-wave phase shifts

We begin by neglecting 𝐷-wave contributions and choosing energy levels to minimize the
influence of higher partial waves. Under this approximation, each energy level directly yields the
𝑆-wave phase shift at that energy.

For the 27-plet (𝑁𝑁 𝐼 = 1), we observe that the phase shift passes through zero above threshold
while becoming large below threshold. This leads us to use a rational function as the fit ansatz,
𝑝 cot 𝛿(𝑝) = (𝑐0 + 𝑐1𝑝

2)/(1 + 𝑐2𝑝
2), where 𝑐𝑖 are affine functions of 𝑎2. We select the ground and

first-excited state in the rest frame irrep A1g, along with the ground state in the first moving frame
irrep A1. On the two small-volume ensembles, we exclude the rest-frame excited state, since it lies
above the 𝑁Δ threshold. The fit produces a rough description of the data, but quantitatively it is not
particularly good, with 𝜒2/dof = 23/16. The data and the fit are shown in Fig. 2. The phase shift
tends to decrease as the continuum limit is approached. There is a virtual state pole, which moves
further below threshold in the continuum.

For the antidecuplet (𝑁𝑁 𝐼 = 0), the presence of mixing between 3𝑆1 and 3𝐷1 partial waves
complicates the analysis. For a first attempt, in the first and second moving frames we take the
helicity-averaged ground-state levels [22]. In frame (0, 0, 1), this corresponds to averaging the

1We denote partial waves as 2𝑠+1ℓ𝐽 , where 𝑠 is the two-baryon spin and ℓ indicates the orbital angular momentum.
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Figure 3: Antidecuplet (𝑁𝑁 𝐼 = 0) 3𝑆1 phase shift, in the approximation that the 3𝐷1 partial wave and
mixing with it vanish. See the caption of Fig. 2. An intersection the red dashed curve corresponds to a pole
in the scattering amplitude: a virtual state if on the upper branch and a bound state if on the lower branch.

energy levels in irreps E and A2 with weights 2 and 1 to account for the fact that two of three
helicities lie in the E irrep. We then treat the resulting averaged levels as arising from a purely
𝑆-wave interaction. We use a quadratic polynomial in 𝑝2 with coefficients that are affine functions of
𝑎2 as our fit ansatz for 𝑝 cot 𝛿(𝑝), which again yields worse-than-desired fit quality but still roughly
describes the data: 𝜒2/dof = 32/14. This is shown in Fig. 3; as in previous cases, we find that
going to finer lattice spacings produces a weaker interaction. For our coarsest lattice spacing, there
is perhaps a bound state at threshold, but this turns into a virtual state and moves below threshold
in the continuum. Note, however, that the usefulness of the helicity-averaged approximation is
demonstrated empirically in Ref. [22] based on experimentally measured scattering amplitudes,
and its validity should likewise be checked for the setup used here. We also note that our lowest-
lying levels are very close to the 𝑡-channel cut, where existing quantization conditions are not valid;
an approach that accounts for the leading 𝑡-channel exchange was presented at this conference [23].

5. Higher partial waves

Our data are also sensitive to higher partial waves. The simpler cases are those that do not
mix, i.e. those with orbital and total angular momentum equal (ℓ = 𝐽) as well as 3𝑃0. For the
corresponding 𝑃 and 𝐷 waves, there always exists at least one frame and irrep for which no other
equal or lower partial wave contributes. Thus, neglecting higher partial waves, each energy level in
these irreps yields the corresponding phase shift at that energy level.

Figure 4 shows the data for two ensembles at a single lattice spacing. For the spin-zero cases,
many energy levels are obtained, which yields a clear picture of the phase shift. In the spin one
cases, the increased number of partial waves reduces the number of levels useful in this way, but
we still obtain a good number of constraints on the phase shifts.

For a full analysis of the spectrum, levels that provide information about more than one partial
wave can also be included, which will yield additional constraints on the phase shifts. An example
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Figure 4: Higher partial waves from ensembles N202 (𝐿/𝑎 = 48, solid) and H200 (𝐿/𝑎 = 32, with black
outline) with 𝑎 = 0.064 fm. First row: 𝑃 waves, 𝑝3 cot 𝛿 versus 𝑝2. Second row: 𝐷 and 𝐹 waves,
𝑝−(2ℓ+1) tan 𝛿 versus 𝑝2. The 1𝑃1, 3𝐷2, and 1𝐹3 partial waves have 𝐼 = 0, while 1𝐷2, 3𝑃1, and 3𝑃0 have
𝐼 = 1. For 1𝑃1, we have omitted the lowest-lying level in (1, 1, 1) A1, which is more strongly influenced by
the 1𝐹3 phase shift. The blue curves show the fit to all ensembles depicted in Fig. 5.
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Figure 5: Antidecuplet (𝑁𝑁 𝐼 = 0) spin-zero spectrum. See the caption of Fig. 1. The blue curves show the
fit described in the text.

fit for 1𝑃1 and 1𝐹3 is shown in Figs. 4 and 5: we use the four-parameter ansatz

𝑝3 cot 𝛿1𝑃1 = 𝑐0 + 𝑐1𝑝
2, 𝑝7 cot 𝛿1𝐹3 = 𝑐2 + 𝑐3𝑝

8, (2)

which is designed to make 𝛿1𝐹3 go to zero at large 𝑝2. Assuming no discretization effects, we obtain
a good fit to all ensembles with 𝜒2/dof = 51/72. This suggests that lattice artifacts may be less
relevant for higher partial waves. Here it was essential to include the 𝐹 wave; neglecting this is
partly responsible for the disagreement between the curve and the points for 1𝑃1 in Fig. 4.
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Figure 6: Ensemble N202: 𝛼-wave phase shift and 𝐽 = 1 mixing angle, assuming 𝐷-wave phase shifts
vanish. Left: constraints imposed by the different energy levels, with inset indicating the 𝑝2 values. The
points with error ellipses show the fit, evaluated at the corresponding 𝑝2. Right: fitted 𝑝 cot 𝛿1𝛼 and 𝜖1 versus
𝑝2.

6. 3𝑺1–3𝑫1 partial wave mixing

For the coupled 3𝑆1 and 3𝐷1 partial waves, we use the Blatt-Biedenharn parametrization [24],

𝐾̃−1 =

(
1 0
0 𝑝2

) (
cos 𝜖1 − sin 𝜖1
sin 𝜖1 cos 𝜖1

) (
𝑝 cot 𝛿1𝛼 0

0 𝑝 cot 𝛿1𝛽

) (
cos 𝜖1 sin 𝜖1
− sin 𝜖1 cos 𝜖1

) (
1 0
0 𝑝2

)
, (3)

which encodes the diagonalization of the S-matrix. In the limit of zero mixing angle 𝜖1, the 𝛼 wave
corresponds to 3𝑆1 and the 𝛽 wave to 3𝐷1. Using the approximation 𝛿1𝛽 = 0, each energy level
imposes a constraint on the (𝑝−2 tan 𝜖1, 𝑝 cot 𝛿1𝛼) plane:

𝑝 cot 𝛿1𝛼 =
𝐵00 + (𝐵01 + 𝐵10)𝑥 + 𝐵11𝑥

2

1 + 𝑝4𝑥2 , 𝑥 = 𝑝−2 tan 𝜖1, (4)

where 𝐵𝑖 𝑗 is the finite-volume matrix 𝐵(𝑝2).
For ensemble N202 (our largest volume), these constraints are shown for ground states in the

rest frame and first two moving frames in Fig. 6. In the moving frames, different irreps provide
quite different constraints and there is sensitivity to the mixing angle. We fit these six energy levels
with the simple three-parameter ansatz

𝑝 cot 𝛿1𝛼 = 𝑐1 + 𝑐2𝑝
2, 𝑝−2 tan 𝜖1 = 𝑐3, (5)

obtaining 𝜒2/dof = 1.2/3, and the fit results are also shown in the figure. Like for the analysis using
the helicity-averaged approximation, we find a virtual state pole. Above threshold, the mixing angle
is negative, which should be contrasted with the positive mixing angle observed in experiments [22].
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7. Conclusions

Using the distillation method, we were able to employ many interpolating operators and obtain
a large number of finite-volume nucleon-nucleon energy levels. Similar to what was found in our
study of the 𝐻 dibaryon, discretization effects appear to be significant also for the 𝑁𝑁 spectrum.
With the action used by CLS, lattice artifacts tend to strengthen 𝑆-wave baryon-baryon interactions.
It appears that large lattice artifacts will add to the numerous existing challenges for computing the
physical deuteron’s small binding energy.

We find virtual state poles in the 𝐼 = 0 and 𝐼 = 1 𝑁𝑁 𝑆 waves at the SU(3)-symmetric point.
Together with the opposite sign for the mixing angle 𝜖1, this suggests that lighter pion masses will
be needed to connect with the physics of the deuteron.

Acknowledgments

We thank Raúl A. Briceño for a helpful conversation. Calculations for this project used re-
sources on the supercomputers JUQUEEN [25], JURECA [26], and JUWELS [27] at Jülich Super-
computing Centre (JSC). The authors gratefully acknowledge the support of the John von Neumann
Institute for Computing and Gauss Centre for Supercomputing e.V. (http://www.gauss-centre.
eu) for project HMZ21. The raw distillation data were computed using QDP++ [28], PRIMME [29],
and the deflated SAP+GCR solver from openQCD [30]. Contractions were performed with a high-
performance BLAS library using the Python package opt_einsum [31]. The correlator analysis was
done using SigMonD [32]. Much of the data handling and the subsequent phase shift analysis was
done using NumPy [33] and SciPy [34]. The plots were prepared using Matplotlib [35]. The quan-
tization condition was computed using TwoHadronsInBox [21]. This research was partly supported
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TRR 211). ADH is supported by: (i) The U.S. Department of Energy, Office of Science, Office
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