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In this talk, I will illustrate an alternative approach to Lüscher’s formula for extracting the nuclear
force from finite volume energy levels using the plane wave basis and eigenvector continuation. We
adopt the formalism of semilocal momentum-space regularized chiral nuclear force to investigate
the two-nucleon energy levels in the finite volumes using plane wave basis with no reliance on
the partial wave expansion. In the chiral EFT framework, the long-range one-pion-exchange
interaction is included nonperturbatively. Thus, this approach works well for the small boxes.
We compare our method with Lüscher’s formula for scattering states and bound states. We also
determine the low energy constants of chiral EFT by fitting lattice QCD data at 𝑚𝜋=450 MeV
from NPLQCD Collaboration. In the calculation, the eigenvector continuation is used to accelerate
the fitting and uncertainty quantification, which also generates an easy-to-use interface to fit the
upcoming lattice QCD results in the future.
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1. Introduction

Lüscher’s formula is an approach to extract the two-body scattering amplitudes from the finite
volume energy levels [1]. The Lüscher’s formula sets up a one-to-one relation between finite volume
energy level and the scattering phase shift at this energy if one truncates it at the leading partial
wave. However, in the finite volume, the rotation symmetry is broken by the boundary conditions,
see periodic condition. The partial wave mixing effect becomes unavoidable. Considering the
partial wave mixing effect, the Lüscher’s formula becomes a determinant equation, where the
one-to-one relation disappears. One has to choose a paramerization scheme of 𝑇-matrix which
is framework-dependent. Meanwhile, one has to use some root-finding algorithm to solve the
determinant equation, which is unstable sometimes. In addition, the Lüscher’s formula becomes
exact only when the box size is much larger the the interacting range. However, in the realistic
system, the long-range interaction could be very important, for example, the one-pion-exchange
(OPE) interaction in the nuclear force. Considering the computational cost, the box size in the
practical lattice QCD simulation could not be very large. Therefore, n alternative approach of
Lüscher’s formula could embed the partial mixing effect and consider the long-range interaction in
the small box is called for.

In our previous work [2], we proposed a approach based on plane wave expansion and chiral
effective field theory (ChEFT). The plane wave expansion renders the natural inclusion of the partial
wave mixing effect and explicit OPE interaction in ChEFT make it work well for small box. In this
work, we develop this approach by using the eigenvector continuation to accelerate the calculation
and make it more practical.

2. Theoretical formalism

The ChEFT is the modern theory to construct nuclear force. As shown in Fig. 1, the one-
pion-exchange interaction, two-pion-exchange interaction and contact interaction are included sys-
temically according to the power counting [3]. Meanwhile, the chiral nuclear force was given in
momentum space and in then energy-independent formalism, which is easy to use for the plane
wave basis Hamiltonian method. In this work, we use the semilocal momentum-space regularized
chiral nuclear force [4], which is the state of the art. In the formalism, the OPE interaction reads,

𝑉1𝜋 ( ®𝑝′, ®𝑝) = −
𝑔2
𝐴

4𝐹2
𝜋

(
®𝜎1 · ®𝑞®𝜎2 · ®𝑞
𝑞2 + 𝑚2

𝜋

+ 𝐶 (𝑚𝜋) ®𝜎1 · ®𝜎2

)
𝑒
− 𝑞2+𝑚2

𝜋

Λ2 , (1)

where 𝑔𝐴 is known and 𝐶 (𝑚𝜋) is introduced to subtract the short-range part in the OPE interaction.
We will benefit from the known long-range interaction. For the short-range interaction, we will
determine the low energy constants (LECs) of contact interactions by fitting the finite volume
energy levels. We could use the irreducible representations (irreps) of the corresponding discrete
group to re-decompose the contact terms. For the specific irrep, only a few independent LECs have
contribution.

In the calculation, we choose the plane wave basis | 𝒑𝒏, 𝜼⟩ in the direct product representation
to deal with the spin space, where 𝒑𝒏 is discrete momentum constrained by the periodic condition
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Figure 1: Feynman diagrams in calculating chiral nucleon force. For the pow counting in details, see
Ref. [3].

and 𝜼 is polarization vector for spin-triplet system. Apparently, under the space rotation �̂� (𝑔) and
space inversion �̂� , the basis transforms as,

�̂� (𝑔) | 𝒑, 𝜼⟩ = |𝑔 𝒑, 𝑔𝜼⟩, �̂� | 𝒑, 𝜼⟩ = | − 𝒑, 𝜼⟩. (2)

Thus, the space spanned by | 𝒑𝒏, 𝜼⟩ forms a representation space of the discrete group for either
static or moving two-body system in the cubic box. In this basis, the finite volume energy level can
be obtained by solving a eigenvalue problem,

det (H − 𝐸I) = 0 or H𝒗 = 𝐸𝒗, (3)

where H is the Hamiltonian matrix. If we treat Lüscher’s formula as the quantization conditions
(QCs) in partial wave basis, the above relation is the QCs in plane wave basis. We use the projection
operator technique (see Ref. [2] for details) to reduce the above equation into different irreps,

H
reduction
=======⇒ diag{HΓ𝑖 ,HΓ 𝑗

,...}, HΓ𝒗 = 𝐸Γ𝒗, (4)

therefore, we get the Hamiltonian equation for the specific irrep, which makes it easy to fit the lattice
QCD data classified by irreps and reduce the dimension of matrix.

The remaining problem is the dimension of the HΓ is still very large. A typical estimation is

dim ∼
(
ΛUV

2𝜋/𝐿

)3
× 1

10
∼ O(1000), (5)

where 𝐿 is the box size and ΛUV is the UV cutoff. We has assumed the H is decomposed into ten
irreps (it is exact for the cubic group with parity for the equal-mass system) and each of them has
the same dimension. Basically, we are dealing with the following eigenvalue problem,

|𝜓⟩ = 𝑎𝑚 |𝜙𝑚⟩, ⟨𝜙𝑚 |𝐻 (𝑐𝑖) |𝜙𝑛⟩𝑎𝑛 = E⟨𝜙𝑚 |𝜙𝑛⟩𝑎𝑛, (6)

where 𝑐𝑖 are the unknown LECs in the Hamiltonian. |𝜙𝑖⟩ is the basis and 𝑎𝑖 is the coefficient.
In our calculation, it is probably not hard to solve a single eigenvalue problem with thousands of
dimension, however, the repeating calculations in the fitting and uncertainty quantifying procedure
make it a large cost. To accelerate the calculation, we adopt the eigenvector continuation (EC)
to perform the subspace learning [5]. As shown in the left panel of Fig. 2, we could choose a
small number of possible parameter sets (training points) to solve the eigenvalue problem exactly.
This process is called subspace learning. We suppose the subspace spanned by the eigenvectors
of the training points is a good approximation of the whole space. We can solve the remaining
eigenvector problems with different parameter sets using the vectors in the subspace as basis,
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Figure 2: Choosing training points (left) and comparisons of Hamiltonian matrix dimensions of the exact
calculation and eigenvector continuations with the box sizes (right).

namely, substituting |𝜙𝑖⟩ with the eigenvectors of training points. In this way, we accelerate the
calculation by optimize the choice of the basis functions. The typical dimension of the subspace
reads

dim𝐸𝐶 =
2𝜋𝑝
𝐿

× 𝑛training ∼ O(10), (7)

where 𝑝 is the scale to control the valid range of the subspace learning usually smaller than the ΛUV

in Eq. (5). 𝑛training is the number of the training points. One can see we decrease the cubic relation
of 1/𝐿 in Eq. (5) to the linear relation. As shown in right panel of Fig. 2, the typical dimension of
the subspace is at O(10). For the EFT, the naturalness of the LECs would make EC more reliable.

In Fig. 3, we present an example with known𝑉1𝜋 and unknown𝑉contact with two LECs {𝑐1, 𝑐2}
in the 𝐿 = {2.70, 3.73, 5.60} fm boxes. We choose two training points, {𝑐phy

1 , 0} and {0, 𝑐phy
2 } to

keep first four energy levels for each points to span the subspace. From Fig. 3, we can see the H𝐸𝐶

with dim = 8 gives very precise results below the highest energy inputs. The 𝑝 in Eq. (7) is just the
highest energy inputs. If we aim to obtain higher energy level, we could input more energy levels.
Therefore, we could solve the Hamiltonian problem in the finite volume fast and accurate with the
help of EC. We do need some computational cost for the subspace learning, but it is one-time cost.
What is more important, after subspace learning, we can provide a easy-to-use interface, namely
H𝐸𝐶

0 and V𝐸𝐶
𝑖

to the lattice community. The users could solve the eigenvalue problem of the
Hamiltonian matrix with dim ∼ O(10),

H𝐸𝐶 = H𝐸𝐶
0 + 𝑐𝑖V

𝐸𝐶
𝑖 , H𝐸𝐶𝒗 = 𝐸𝒗. (8)

There is no need for the users to know the details of ChEFT.

3. Scattering states

To compare our approach with the Lüscher’s formula, we present static, spin-singlet, even-
parity example and moving, spin-triplet, odd-parity example in Figs. 4 and 5 respectively. We first
solve the NNLO chiral nuclear force with plane wave basis in the finite boxes to get the energy
levels as shown in the dashed lines. Then, we use the Lüscher’s quantization conditions truncated
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Figure 3: Comparisons of the exact results and EC results.

at different 𝐽max to get the discrete points, where the phase shifts of the same interactions are used
as inputs. We can see the Lüscher’s quantization conditions will finally converge to plane wave
expansion results, for both cases, which shows that our approach is consistent with the Lüscher’s
quantization conditions considering the higher partial wave mixing effect. Meanwhile, we can see
the discrepancies appears for the small box with low 𝐽max truncation, which means the uncertainties
of Lüscher’s quantization conditions for there cases could be large. It should be stressed that the
visually small uncertainties in the finite volume energy levels could correspond to large uncertainties
for the phase shift, because the energy levels often appear in the proximity of the singularity of
Lüscher’s Zeta functions.

4. Bound states

In addition to the scattering states, we also compare Lüscher’s formula for bound states with
the plane wave expansion results. In Lüscher’s formula, the differences of binding momentum (or
energy) between finite volume and infinite volume is described by the exponential relation [6–9],

^ = ^0 +
𝑍2

𝐿
𝐹 (𝐿, ^0) + O(𝑒−2^𝐿), (9)

where 𝑘𝑎𝑝𝑝𝑎 and ^0 are binding momentum in the finite box and infinite volume. For 𝒅 = (0, 0, 0),
one has 𝐹 (𝐿, ^) = 6𝑒−^𝐿 + 6

√
2𝑒−

√
2^𝐿 + 8√

3
𝑒−

√
3^𝐿 . The relations can be derived from expanding

the Lüscher’s quantization conditions at the ^0 in the analytical continuation sense. We use the
LO chiral nuclear force at 𝑚𝜋 = 138, 300, 450 MeV. We tune 𝑡ℎ𝑒𝑉contact to permit bound states
𝐵𝑑 = 2, 10, 20 MeV. We put the interaction into boxes with 𝐿 = 2.80, 3.3, 3.73, 4.0, 4.5, 5.0,
5.60, 6.0, 6.5, 7.0, 7.5, 8.0 fm and obtain the finite volume energy levels from the plane wave
expansion method. Finally, we try to fit these energy levels with exponential relations to check their
consistence. We illustrate the spin-singlet results in Fig. 6 to show the fitting results. We assign
constant uncertainties for every energy levels, thus the best fits will not depend on the uncertainties.
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Figure 4: Comparisions of the Lüscher’s quantization conditions truncated at different 𝐽max and plane wave
wave expansion method for the spin-singlet, even-parity NN systems with 𝑑 = 0.
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Figure 5: Comparisions of the Lüscher’s quantization conditions truncated at different 𝐽max and plane wave
wave expansion method for the spin-triplet, odd-parity NN systems with 𝑑 = 1

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
0
1

Finite volume NN systems using plane wave expansion and eigenvector continuation Lu Meng

0.02

0.04

0.06

0.08
mπ=138MeV
Bd
IFV=2MeV,

Bd
fit-I=5.9-1.5

+1.5 MeV
Bd
fit-II=4.4-2.3

+2.3 MeV

mπ=138MeV
Bd
IFV=10MeV,

Bd
fit-I=13.8-1.3

+1.3 MeV
Bd
fit-II=11.4-1.8

+1.8 MeV

mπ=138MeV
Bd
IFV=20MeV,

Bd
fit-I=23.0-1.2

+1.2 MeV
Bd
fit-II=20.6-1.6

+1.6 MeV

0.02

0.04

0.06
mπ=300MeV
Bd
IFV=2MeV,

Bd
fit-I=5.1-1.5

+1.5 MeV
Bd
fit-II=3.9-2.2

+2.2 MeV

mπ=300MeV
Bd
IFV=10MeV,

Bd
fit-I=12.6-1.2

+1.2 MeV
Bd
fit-II=10.9-1.8

+1.8 MeV

mπ=300MeV
Bd
IFV=20MeV,

Bd
fit-I=21.9-1.1

+1.1 MeV
Bd
fit-II=20.3-1.6

+1.6 MeV

3 4 5 6 7

0.02

0.04

0.06
mπ=450MeV
Bd
IFV=2MeV,

Bd
fit-I=4.7-1.4

+1.4 MeV
Bd
fit-II=3.6-2.2

+2.2 MeV

3 4 5 6 7

mπ=450MeV
Bd
IFV=10MeV,

Bd
fit-I=12.2-1.2

+1.2 MeV
Bd
fit-II=10.7-1.7

+1.7 MeV

3 4 5 6 7 8

mπ=450MeV
Bd
IFV=20MeV,

Bd
fit-I=21.5-1.1

+1.1 MeV
Bd
fit-II=20.2-1.6

+1.6 MeV

Figure 6: Fitting the finite volume energy levels from plane wave expansions with the Lüscher’s formula in
Eq. (9) for the bound states. Dashed line and dot-dashed line are for fit-I and fit-II respectively.

We perform two fits, fit-I including all inputs and fit-II only including larger boxes results (the
orange ones for 𝐿 > 4.0 fm).

By comparing the best fit results with the exact infinite volume binding energies, one can
see the best results with exponential relations are biased, which are larger than the exact results.
Meanwhile, one can see the smaller pion mass, the larger bias. If we drop some energy levels
from small boxes, we could decrease the bias. Therefore, the bias arise from the small boxes and
long-range interaction, where is the chance of the pane wave expansion methods.

5. Fitting NPLQCD results

We also use the plane wave expansion method to fit NPLQCD data for 𝑚𝜋 = 450 MeV [10, 11].
For such a large pion mass, the validity of the ChEFT is questionable. Here, we only perform a proof-
of-principle. We first obtained the 𝑚𝜋-dependent 𝑔𝐴, 𝑓𝜋 and 𝑚𝑁 by fitting the lattice QCD results
using the quadratic function of 𝑚2

𝜋 [12]. We use the ChEFT to NLO with the pion-mass-dependent
contact interaction,

𝐶
𝑝ℎ𝑦

𝑖
→ 𝐶

𝑝ℎ𝑦

𝑖

[
1 + 𝑎𝑖

(
1 − 𝑚2

𝑚2
phy

)]
, (10)

where 𝐶𝑖 is the LECs for the contact interactions. This interaction will reduce to physical chiral
nuclear force when we take 𝑚 = 𝑚phy. We try to fit the NPLQCD results to determined the 𝑎𝑖 , where
three 𝑎𝑖s for spin triplet and two 𝑎𝑖s for spin singlet. We only use the ground states of NPLQCD
data in different boxes including both moving system and static system,

𝐿 = {2.801, 3.734, 5.602} fm ⊗ 𝑑2 = {0, 4}. (11)
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Figure 7: The inputs from the NPLQCD data and the fitting results.

The 𝜒2 for different systems read,

𝑆 = 1 : 𝜒2/d.o.f = 0.87, 𝑆 = 0 : 𝜒2/d.o.f = 0.92. (12)

We present the 𝑚𝜋-dependent binding energies for the 1𝑆0 and 3𝑆1 systems in Fig. 7. One can see
our results are consistent with the binding energies from the Lüscher’s formula at 𝑚𝜋 = 450 MeV
from NPLQCD group. Meanwhile, our results will go across the physics ones.

6. Conclusion and outlook

In this work, we illustrate an alternative approach of Lüscher’s formula to investigate NN
systems in the box. The three ingredients and corresponding advantages are list as follows,

• Plane wave expansions: includes the partial wave mixing effect;

• ChEFT: benefits from the known long-range interaction 𝑉1𝜋 and works well for small boxes;

• Eigenvector continuation: accurate and fast, provides an easy-to-use interfaces (Hamitonion
matrix with dimension about O(10)) to lattice community,

We compare our approach with the Lüscher’s formula for the scattering states and showthat the
high partial wave effect in Lüscher quantization conditions is important, especially in small boxes.
We also show the Lüscher’s exponential relation for binding momentum (energy) differences in
finite volume and infinite volume could be biased in the small boxes and small 𝑚𝜋 . Finally, we use
the real lattice QCD data from NPLQCD at 𝑚𝜋 = 450 MeV to further give a proof-of-principle.

Apparently, the advantages of our approach would be more obvious for physical 𝑚𝜋 . In the
future, we will refine the analysis of pion mass dependence. Meanwhile, we will use the plane wave
expansion method for the 𝐷∗𝐷 and 𝐷∗�̄� systems to investigate 𝑇𝑐𝑐 and 𝑋 (3872) states, where the
typical bound state size is unnatural large even larger than the box size of the common lattice QCD
simulations, see [13].
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