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In this work we present perturbative results for the renormalization of the supercurrent operator,
Sµ , in N = 1 Supersymmetric Yang-Mills theory. At the quantum level, this operator mixes
with both gauge invariant and noninvariant operators, which have the same global transformation
properties. In total, there are 13 linearly independent mixing operators of the same and lower
dimensionality. We determine, via lattice perturbation theory, the first two rows of the mixing
matrix, which refer to the renormalization of Sµ , and of the gauge invariant mixing operator, Tµ .
To extract these mixing coefficients in the MS renormalization scheme and at one-loop order, we
compute the relevant two-point and three-point Green’s functions of Sµ and Tµ in two regulariza-
tions: dimensional and lattice. On the lattice, we employ the plaquette gluonic action and for the
gluinos we use the fermionic Wilson action with clover improvement.
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Noether supercurrent operator mixing M. Costa

1. Introduction to N = 1 SYM and definition of operators

The N = 1 Supersymmetric Yang-Mills (SYM) Lagrangian [1] connects gluon and gluino
fields; it shares some of the fundamental properties of supersymmetric gauge theories containing
quarks and squarks, while at the same time it is amenable to high-accuracy numerical simula-
tions [2]. Therefore it is an ideal forerunner for future investigations of theories containing more
superfields. In the Wess-Zumino (WZ) gauge, the Lagrangian is1:

LSYM =−1
4

uα
µνuα

µν +
i
2

λ̄
α

γ
µDµλ

α , uµν = ∂µuν −∂νuµ + ig[uµ ,uν ], Dµλ = ∂µλ + ig[uµ ,λ ],

(1.1)
where uµν is the gluon field tensor, uµ is the gluon field, λ is the gluino field which is a Majorana
spinor in the adjoint representation of the gauge group. LSYM remains invariant, up to a total
derivative, under the supersymmetric transformations:

δξ uα
µ = −iξ̄ γ

µ
λ

α ,

δξ λ
α =

1
4

uα
µν [γ

µ ,γν ]ξ . (1.2)

Noether’s theorem gives a supercurrent for this Lagrangian stemming from the transformations of
Eq. (1.2); in Euclidean space, the supercurrent takes the form:

Sµ =−1
2

trc(uρ σ [γρ ,γσ ]γµλ )

In this work, we make use of the Wilson formulation on the lattice, with the addition of the clover
(SW) term for gluino fields. For the lattice discretization of Sµ , the lattice version of gluon field
tensor, F̂ρσ , which we adopt, is a sum of plaguettes in the ρ −σ plane having x as their initial and
final point (see, e.g., Ref. [3] for standard notation).

A proper study of Sµ must address the fact that it mixes with a number of other operators at
the quantum level. These operators must necessarily have the same transformation properties under
global symmetries (e.g. Lorentz, or hypercubic on the lattice, global SU(Nc) transformations, ghost
number, etc.) and their dimension must be lower than or equal to that of Sµ , namely 7/2. There are
altogether four classes of such operators, as follows:

Class G: Gauge-invariant operators.

Class A: BRST variation of operators.

Class B: Operators which vanish by the equations of motion.

Class C: Other operators which do not belong to the above classes.

Sµ being gauge invariant operator belongs to Class G. In particular, Sµ mixes with another
dimension 7/2 gauge invariant operator, denoted here as:

Tµ = 2trc(uµ νγνλ ) (1.3)
1In order to quantize the theory, we fix the gauge by including a gauge-fixing term, together with the compensating

ghost field (cα ) terms; these terms are the same as in the non-supersymmetric case.
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A total of twelve gauge noninvariant operators could in principle mix with Sµ . These operators
necessarily belong to classes A, B and C2:

OA1 =
1
α

trc((∂νuν)γµλ )− ig trc([c, c̄]γµλ )

OB1 = trc(uµD̸λ ), OB2 = trc(/uγµD̸λ )

OC1 = trc(uµλ ), OC2 = trc(/uγµλ ), OC3 = trc(/u∂µλ ), OC4 = trc((∂µ/u)λ )

OC5 = trc((∂νuν)γµλ ), OC6 = trc(uνγµ∂νλ ), OC7 = ig trc([uρ ,uσ ][γρ ,γσ ]γµλ )

OC8 = ig trc([uµ ,uν ]γνλ ), OC9 = ig trc([c, c̄]γµλ ) (1.4)

Among them, there is just one class A acceptable operator. Two of them are not present on-shell
because are class B operators. Further, there are nine class C operators, where the first two class C
operators are lower dimensional operators and they only may show up in the lattice regularization.

For a comprehensive presentation of our results, along with detailed explanations and a longer
list of references, we refer to our publication [3].

2. Computational setup for the renormalization of the supercurrent operator

Our calculation set up shares a backbone of methodology, which is briefly described in three
steps:

1. The first step is to produce a minimal list of all candidate mixing operators by exploiting
certain symmetries of the action, valid both in the continuum and the lattice formulation of
the theory. This reduces the number of the operators that can possibly mix with Sµ at the
quantum level to a minimum set of 13 operators.

2. Secondly, we careful select and compute a set of Green’s functions both in the continuum
and the lattice regularizations. The lattice calculations are the crux of this work; and the con-
tinuum calculations serve as a necessary introductory part, allowing us to relate our lattice
results to the MS scheme. An unambiguous extraction of all mixing coefficients and renor-
malization constants of the operator Sµ entails specific choices of the external momenta for
the Green’s functions. In particular, we calculate two-point and three-point Green’s functions
of Sµ using both dimensional regularization (continuum), where we regularize the theory in
D-dimensions (D= 4−2ε), and lattice regularization. The continuum Green’s functions will
be used in order to calculate the renormalized Green’s functions in the MS scheme, which
are necessary ingredients for the renormalization conditions on the lattice.

3. Lastly, we apply renormalization conditions in the MS scheme to the Green’s functions, in
order to get the results on the renormalization and the mixing coefficients.

2Operators OC5 and OC9, taken together with OA1, are linearly dependent; however, keeping both of them in the list
affords us with additional consistency checks.
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Note that the same mixing operators may mix with Tµ . We follow the same methodology and we
also calculate the same one-loop Green’s functions with insertion of the Tµ operator. Thus, we
determine the second row of the 13×13 mixing matrix. However these results [3] are omitted here
for the sake of brevity.

For off-shell matrix elements, the mixing assumes this general form:

SR
µ = ZSSSB

µ +ZST T B
µ +ZSA1O

B
A1 +

2

∑
i=1

ZSBiO
B
Bi +

9

∑
i=1

ZSCiO
B
Ci, (2.1)

where the superscript B stands for the bare and R for renormalized quantities. In order to deter-
mine all Z-factors, we consider two-point Green’s functions with one external gluino and one ex-
ternal gluon fields (⟨uα1

ν (−q1)Sµ(x) λ̄ α2(q2)⟩), as well as three-point Green’s functions with exter-
nal gluino/gluon/gluon fields (⟨uα1

ν (−q1)uα2
ρ (−q2)Sµ(x) λ̄ α3(q3)⟩) and with gluino/antighost/ghost

fields (⟨cα3(q3)Sµ(x) c̄α2(q2)λ̄
α1(−q1)⟩); similarly for Tµ .

In Table 1, we show the tree-level Green’s functions for all operators apart from overall color
and exponential factors. These functions naturally show up in the results of the bare Green’s
functions of SR

µ , allowing us to deduce the corresponding mixing coefficients. Furthermore, the
tree-level Green’s functions with the same external fields may depend on more than one external
momentum qi; this is a consequence of the absence of momentum conservation since there is no
summation/integration over the position of the operators. Although this seems to complicate things
it is a way to disentangle the mixing patterns. For this reason, it is convenient to calculate the
Green’s functions for specific choices of the external momenta. Taking into account potential IR
divergences, which may appear at exceptional values of qi, a sufficient set of choices for external
momenta are: 3 choices for the two-point Green’s functions with external u(q1)λ (q2): q2 = 0,
q1 = 0, q2 = −q1, as well as a single choice for each of the two three-point Green’s functions
with external u(q1)u(q2)λ (q3) and λ (q1)c̄(q2)c(q3): (q2 = 0, q3 = −q1) and (q2 = q1, q3 = 0),
respectively.

Each Green’s function is written as a sum of several Feynman diagrams. The one-loop Feyn-
man diagrams (one-particle irreducible (1PI)) contributing to corresponding Green’s functions are
shown in Figures 1, 2, 3.

Figure 1: One-loop Feynman diagrams contributing to the two-point Green’s functions ⟨uν Sµ λ̄ ⟩ and
⟨uν Tµ λ̄ ⟩. A wavy (dashed) line represents gluons (gluinos). A cross denotes the insertion of Sµ (Tµ ). Dia-
grams 2, 4 do not appear in dimensional regularization; they do however show up in the lattice formulation.
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Tree Level two-point Tree Level three-point Tree Level three-point
Operators Green’s function Green’s function Green’s function

(external legs: uν(−q1) λ̄ (q2)) (external legs: uν uρ λ̄ ) (external legs: c c̄ λ̄ )

Sµ −i( /q1γν −q1ν)γµ g [γν ,γρ ]γµ/2 0

Tµ i(q1µγν −/q1δµν) −g(δµνγρ +δµργν) 0

OA1 iq1νγµ/(2α) 0 (g/2)γµ

OB1 iδµν /q2/2 −g(δνµγρ +δρµγν)/2 0

OB2 iγνγµ /q2/2 −2gγνγµγρ 0

OC1 δµν/2 0 0

OC2 γνγµ/2 0 0

OC3 iγνq2µ/2 0 0

OC4 iγνq1µ
/2 0 0

OC5 iγµq1ν/2 0 0

OC6 iγµq2ν/2 0 0

OC7 0 −g [γν ,γρ ]γµ 0

OC8 0 −g(δνµγρ +δρµγν)/2 0

OC9 0 0 −(g/2)γµ

Table 1: Two-point and three-point amputated tree-level Green’s functions of Sµ and Tµ , as
well as of gauge noninvariant operators which may mix with Sµ . ⟨uα1

ν (−q1)Oi(x) λ̄ α2(q2)⟩,
⟨uα1

ν (−q1)uα2
ρ (−q2)Oi(x) λ̄ α3(q3)⟩ and ⟨cα3(q3)Oi(x) c̄α2(q2)λ̄

α1(q1)⟩ are shown apart from overall fac-
tors of δ α1α2ei x·(q1+q2), f α1α2α3ei x·(q1+q2+q3) and f α1α2α3ei x·(q1−q2+q3), respectively.

3. Results for Green’s functions and for the mixing matrix on the lattice

Both MS-renormalized and bare Green’s functions have the same tensorial structures. At
the one-loop order the differences between the MS-renormalized and corresponding bare lattice
Green’s functions appear in the renormalization conditions in the MS scheme. These differences
are polynomial in the external momenta and proportional to the tree-level Green’s functions of
the operators. Due to the fact that these differences appear in the renormalization conditions, we
present them here. First of all, the resulting expression for the difference between the two-point
MS-renormalized and lattice bare Green’s functions of Sµ for q2 = 0, is:
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Figure 2: One-loop Feynman diagrams contributing to the three-point Green’s functions ⟨uν uρ Sµ λ̄ ⟩ and
⟨uν uρ Tµ λ̄ ⟩ . Diagrams 1, 2, 3, 5, 6, 11, and 13 do not appear in dimensional regularization but they contribute
in the lattice regularization. A mirror version of diagrams 3, 4, 5, 6, 8, 10, 14, 15 and 16 must also be
included.

⟨uα1
ν (−q1)Sµ λ̄

α2(q2)
∣∣MS
q2=0 −⟨uα1

ν (−q1)Sµ λ̄
α2(q2)⟩

∣∣LR
q2=0 = i

g2

16π2
1
2

δ
α1 α2eiq1xNc ×

[

−5.99999/q1δµ ν + γνq1µ5.99722+(γνγµ/q1 + γµq1ν −2γνq1µ)

(
39.47842

N2
c

−30.57429

+5.17830α −4.55519c2
SW +5.3771cSWr+

3
2
(1−α) log

(
a2

µ̄
2))] (3.1)
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Figure 3: One-loop Feynman diagrams contributing to the three-point Green’s functions ⟨cSµ c̄ λ̄ ⟩ and
⟨cTµ c̄ λ̄ ⟩ . The “double dashed” line is the ghost field. Diagrams 1 and 2 do not appear in dimensional
regularization; they do however show up in the lattice formulation.

The absence of q-independent terms means that the lower-dimensional operators, OC1 and OC2,
do not mix with Sµ . The renormalization condition for the two-point Green’s functions involves
the renormalization factors of the external fields and of the supercurrent operator as well as the
corresponding nonvanishing tree-level Green’s functions along with their mixing coefficients. The
condition applied to the gluino-gluon Green’s function of the operator Sµ reads to one loop:

⟨uR
ν SR

µ λ̄
R⟩ = Z−1/2

λ
Z−1/2

u ⟨uB
ν SR

µ λ̄
B⟩

= Z−1/2
λ

Z−1/2
u ZSS⟨uB

ν SB
µ λ̄

B⟩+ZST ⟨uB
ν Tµ

B
λ̄

B⟩tree

+ ZSA1⟨uB
ν OB

A1 λ̄
B⟩tree

+
2

∑
i=1

ZSBi⟨uB
ν OB

Bi λ̄
B⟩tree +

6

∑
i=1

ZSCi⟨uB
ν OB

Ci λ̄
B⟩tree +O(g4) (3.2)

From the choice q2 = 0 we extract:

ZLR,MS
SS = 1+

g2

16π2 (
−9.86960

Nc
+Nc(−2.3170+14.49751c2

SW −1.23662cSW r)) (3.3)

ZLR,MS
ST =

g2

16π2 3Nc (3.4)

ZLR,MS
SA1 = ZLR,MS

SC1 = ZLR,MS
SC2 = ZLR,MS

SC4 = ZLR,MS
SC5 = 0 (3.5)

An important feature of the supercurrent operator is that its renormalization is finite: this is in line
with its classical conservation. The mixing with Tµ on the lattice is related to the γ-trace anomaly
of the supercurrent operator and it is in agreement with older results in the literature [4]. Further,
there is no mixing with OA1, OC4 and OC5 operators.

Since for the choice q2 = 0 the tree-level two-point Green’s functions of OB1,OB2,OC3,OC6

6
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vanish, we evaluate the two-point Green’s functions at q1 = 0, leading to this expression:

⟨uα1
ν (−q1)Sµ λ̄

α2(q2)⟩
∣∣MS
q1=0 −⟨uα1

ν (−q1)Sµ λ̄
α2(q2)⟩

∣∣LR
q1=0 = i

g2Nc

16π2 ×

1
2

δ
α1 α2eiq2x ×

[
γνγµ/q2

(
0.80802− 1

2
log

(
a2

µ̄
2))−/q2δµ ν

(
0.38395+ log

(
a2

µ̄
2))] (3.6)

From this choice (q1 = 0) we determine the logarithmically divergent mixings with class B
operators as well as with OC3 and OC6.

ZLR,MS
SB1 =

g2

16π2 Nc
(
−0.38395− log

(
a2

µ̄
2)) (3.7)

ZLR,MS
SB2 =

g2

16π2 Nc

(
0.80802− 1

2
log

(
a2

µ̄
2)) (3.8)

ZLR,MS
SC3 = ZLR,MS

SC6 = 0 (3.9)

All the previous results are consistent with the choice q2 =−q1. The expression for the corre-
sponding difference at q2 =−q1 is:

⟨uα1
ν (−q1)Sµ λ̄

α2(q2)⟩
∣∣MS
q2=−q1

−⟨uα1
ν (−q1)Sµ λ̄

α2(q2)⟩
∣∣LR
q2=−q1

= i
g2

16π2
1
2

δ
α1 α2Nc ×

[

0.80802γµq1ν +4.38396γνq1µ +
1
2

γνγµ/q1 log
(
a2

µ̄
2)+(γνγµ/q1 + γµq1ν −2γνq1µ)

(
39.47842

N2
c

−31.38231+5.17830α −4.55519c2
SW +5.37708cSWr+2log

(
a2

µ̄
2)− 3

2
α log

(
a2

µ̄
2))

+/q1δµ ν

(
−5.61605+ log

(
a2

µ̄
2))] (3.10)

In order to determine the mixing coefficients with the operators OC7, OC8 and OC9, we also
need to impose a set of renormalization conditions on three-point Green’s functions. The first one
involves two external gluons and one gluino:

⟨uR
ν uR

ρ SR
µ λ̄

R⟩ = Z−1/2
λ

ZuZSS⟨uB
ν uB

ρ SB
µ λ̄

B⟩+ZST ⟨uB
ν uB

ρ T B
µ λ̄

B⟩tree

+
2

∑
i=1

ZSBi⟨uB
ν uB

ρ OB
Bi λ̄

B⟩tree +
8

∑
i=7

ZSCi⟨uB
ν uB

ρ OB
Ci λ̄

B⟩tree +O(g4) (3.11)

The second one involves external gluino/antighost/ghost fields:

⟨cR SR
µ c̄R

λ̄
R⟩ = Z−1

c Z−1/2
λ

ZSS⟨cBSR
µ c̄b

λ̄
B⟩+ZST ⟨cBT B

µ c̄B
λ̄

B⟩tree

+ ZSA1⟨cB OB
A1 c̄B

λ̄
B⟩tree +ZSC9⟨cB OB

C9 c̄B
λ̄

B⟩tree +O(g4) (3.12)
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The result for the difference of the first three-point Green’s function is:

⟨uα1
ν (−q1)uα2

ρ (−q2)Sµ λ̄
α3(q3)⟩

∣∣MS
q2=0,q3=−q1

−⟨uα1
ν (−q1)uα2

ρ (−q2)Sµ λ̄
α3(q3)⟩

∣∣LR
q2=0,q3=−q1

=

g3Nc

16π2 f α1α2α3

[(
δνργµ − γνγργµ

)(19.73920
N2

c
−12.48660+3.28231α

−2.27761c2
SW +2.68854cSWr+

1−2α

2
log

(
a2

µ̄
2))] (3.13)

With this result we conclude that there are no mixings with OC7 ad OC8. The lattice Green’s
functions containing gluino-ghost-antighost external fields are identical to the continuum ones at
one loop order; thus, there is also no mixing of Sµ with OC9.

4. Summary – Conclusion

To summarize the main points, we have seen that the supercurrent operator suffers from mix-
ing with both gauge invariant and noninvariant operators. We have calculated the first two rows of
the mixing matrix; these correspond to the two gauge invariant operators which are involved. The
results are important in order to have a thorough picture of the mixing pattern when gauge nonin-
variant and off-shell Green’s functions are employed. The novelty in our one-loop results is that we
calculate the complete mixing patterns of the supercurrent operator perturbatively. More precisely,
we use gauge-variant off-shell Green’s functions; we obtain analytic expressions for the renormal-
ization factors and mixing coefficients, where the number of colors Nc, the coupling constant g, the
gauge parameter α , the clover/Wilson parameters cSW/r (on the lattice) are left unspecified.

In our ongoing investigations, the renormalization of Sµ is also deduced by calculating exclu-
sively gauge-invariant Green’s functions; in this case the mixing of gauge-noninvariant operators
is irrelevant and there is no need to fix the gauge or introduce ghost fields, leaving only the effec-
tive 2× 2 space of Sµ and Tµ mixings. Therefore, this Gauge-Invariant Scheme (GIRS) is more
accessible via non-perturbative calculations. For detailed information on non-perturbative results,
see the proceedings by I. Soler in this conference [5].
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