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1. Introduction

The quantization in the path-integral formalism in a Euclidean spacetime enables the application
of Monte Carlo methods in order to estimate observables in gauge theories. The connection be-
tween Euclidean correlation functions and Minkowski, physical amplitudes is hindered by off-shell
contributions that arise at large Euclidean time [1]. Nonetheless, the spectrum of the finite-volume
Hamiltonian is connected to infinite-volume Minkowski amplitudes [2—4], which are therefore ac-
cessible from lattice calculations. For this reason, the computation of the finite-volume energy
spectra of gauge theories is a task of primary importance. Another connection between Euclidean
correlation functions and Minkowski amplitudes is provided by spectral densities. These are inde-
pendent of the metric, and they allow the extraction of information without relying on large time
separations, avoiding the problems of Ref. [1]. The limitation lies in the fact that the computation of
spectral densities from lattice correlators is ill-posed. Nonetheless, regularisations to this problem
exist [5, 6], and the topic has been receiving increasing attention [7—13]. Applications to inclusive
decays can be found in Refs. [7-9], and interesting ideas for exclusive processes are in Ref. [11].

In this proceeding we take another turn. Most of the aforementioned references are designed
in the perspective of the infinite-volume limit. Here, we use smeared spectral densities to study the
finite-volume spectra. There are several motivations for looking into this direction. The energies
are encoded into lattice correlators as functions of Euclidean time, and spectral densities contain
the same information as functions of the energy, providing a different outlook on lattice data. While
the extraction of a ground state from a correlation function often relies on its large-time behaviour,
the information is mixed non-trivially in the spectral densities, which takes contributions from the
correlator at each time. We will show that the ground state can be extracted from smeared spectral
densities by performing non-linear fits to the smearing kernel. We will also mention applications
for operator smearing. In order to show these ideas at a reasonable computational cost, we analyse
in this proceeding synthetic data and correlation functions of mesons.

2. Smeared spectral densities

Our setup for the computation of smeared spectral densities, introduced in Ref. [6], has been
extensively discussed in Ref. [14]. In this proceeding, we smear the spectral density with a Gaussian
kernel, A, (E) = exp (—E?/20?) /\2n0o

pro(E) = / JE'Ay (E ~ E') pr(E') | (1)

We begin from the two point function, at zero momentum, built with the interpolating field O (x, 1),
which can be written as

.
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The smeared spectral density associated with such correlator is then
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Figure 1: The effect of operator smearing is shown on the smeared spectral density (left panel) and on the
correlator (right panel). Without operator smearing (g = 0), excited states dominate both signals, shown in
blue. In the orange lines, the radius g of Eq. (4) has been tuned so that the interpolating operator mainly
overlaps with those states |n) having energy 0 < E,, < 2mpy.

It is clear from these two equations that the information encoded in correlators and spectral densities
is the same. The idea of fitting Eq. (2) to a sum of exponentials in order to obtain energies and
matrix elements is well established. In Sec. 5, we will touch on the possibility to fit instead Eq. (3) to
a sum of Gaussians. In the following, we will drop references to the volume L, which is understood
to be finite.

3. Operator smearing

Consider a local interpolating operator of the type O(x) = ¢ (x)I'¥(x) that annihilates the
hadron H. Such operator can have large overlap with excited states, hindering the study of the
ground state |H). Operator smearing! is a popular solution to this problem, since it allows working
with interpolating operators that have suppressed overlapping with excited states. An example is
provided by Gaussian smearing, which amounts to use the operator O, (x) built from the fields

‘r//g (x):
e~ (x=¥)%/28”
V2rg

where ¢, ¢’ are color indices, @, @’ are Dirac indices and a sum is intended over o, ¢’. The amount

lvbg (x)?x = dy 5(1(1/500"/’()));/’ > 4

of smearing, parametrised by g, can be tuned by looking at Fig. 1. Without operator smearing, the
smeared spectral density on the left panel grows monotonically without showing the expected peaks.
Similarly, the effective mass on the right panel does not reach a plateau. When operator smearing is
used, the situation improves: the effective mass does not depend on time within the statistical error
after r/a = 10, and the spectral density exhibits a peak. Due to the smearing radius of the spectral

Not to be confused with the smearing of the spectral density.
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density, o/myg = 0.82, the observed peak is the result of multiple contributions, mainly from the
states |H) and |HH) which have energies Ey = mpy and Ergy ~ 2mp. The smearing has been in
fact tuned so that contributions to the spectral density are increasingly smaller after 2mpg. For this
example, we have used the interpolating operator of a pseudoscalar meson, and the configurations
from the ensemble B1 of Ref. [14].

4. Excited states contamination

When the smeared spectral density displays a peak, it is important to understand whether it
takes contributions from a single or multiple states. This can be done by checking the location of
the peak while changing the smearing radius. A signal that is not contaminated by excited states,
will show a stable peak when the radius of the smearing kernel o is reduced. Conversely, if the
peak is the result of multiple contributions, it will shift by varying o. In this way, excited states
can be detected even if the smearing radius does not allow separating them explicitly. An example
is shown in Fig. 2, in which we have used synthetic data having two states of energies my and
2my, and a relative error of 2%. While at o-/mpy = 0.2 the different peaks can be seen explicitly,
it is also clear at larger radii (o-/mpy > 0.6) that the spectral density is the result of more than one
contribution, since it shifts towards m g as o is decreased.
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Figure 2: Smeared spectral density from synthetic data. The true spectral density has two peaks of equal
height at E = mpy and E = 2mpy. If the smearing radius is too large, these cannot be distinguished. By
varying the smearing radius, the peak shifts, proving that the spectral density is the result of more than one
contribution. At o-/mpg = 0.2 the peaks are resolved.

2We use for mpy the reference value provided by the effective mass analysis.
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5. Fits of smeared spectral densities

A finite-volume spectral density smeared with a Gaussian kernel can be fitted to ftg.k)(E ),
where the integer k denotes how many states are included in our model function:

k
FENE) = Y Wl (E —Ey) . &
n=1

The parameters are estimated by minimising the following y?

= 2 (18 E) = pa(B)) Covile oo (15 (E) = por (B - (©)
7 EFE

The parameters E,, and w,, are related to the finite-volume energies and matrix elements according
to Eq. (3). These fits have been applied to lattice data in Ref. [14]. In this section, we use synthetic
data in order to show the fit results against the true values. The input data has two states with
energies my and 2mpy, and a relative error of 2%. Fig. 3 shows in the blue band an example of
correlated fit to two Gaussians. The points at which the spectral densities have been evaluated are
chosen in order to minimise the condition number of the covariance matrix Covgg/ [0+ ] appearing
in the Xjffﬁ) of Eq. (6). The smearing radius of the spectral density is o/mgy = 0.7. While this
value is too large to separate the peaks, the fit is able to identify both energies. Fig. 3 also shows
the contributions coming from each Gaussian A, (E — E,;). The first Gaussian, and its parameters
Ey, wo, are mainly determined by the points at low energies, which tend to be the most precise in
the reconstruction. The errors on the single Gaussians are larger than the error on their sum. For
this fit, the reduced X;(2> is 1.36. The fit results are Eg = 1.00(1), E; = 2.02(5), wo = 2.30(8),

wy = 2.32(4), all in units of mp.
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Figure 3: Example of correlated fit of a smeared spectral density (black points) from synthetic data. Despite
the smearing radius being too large to separate the two contributions in the spectral reconstruction, the fit
is able to identify them with great precision. The fit parameters are determined with relative uncertainty of
order 1 — 3%.

6. Conclusion

In this proceeding, we have briefly discussed how smeared spectral densities can be used at
a fixed, finite volume. An example is the tuning of the overlap of a given interpolating operator
with excited states, as shown in Sec. 3. Moreover, the dependence on the smearing radius o can be
helpful in order to detect the presence of excited states in a given signal, as shown by Fig. 2. Finally,
fits of spectral densities can be used to extract finite-volume energies and matrix elements. These
technologies have been applied in Ref. [14] for the extraction of the ground state, in the context of
composite Higgs models. Given the positive results, an interesting perspective is the application of
these methods to challenging situations such as the study of resonances and baryons.
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