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1. Introduction

𝑆𝑈 (𝑁𝑐) gauge theories at finite temperatures are known to undergo a deconfinement phase
transition [1]. Non-perturbative studies of this transition give valuable insights on the dynamics of
Yang-Mills theories from a number of perspectives. For instance, one can characterise the behaviour
of thermodynamic observables as a function of the number of colours 𝑁𝑐 [2–4]. First-order phase
transitions in the early universe leave an imprint in gravitational waves (see e.g., Refs. [5–8]). This
opens the exciting possibility of using gravitational waves as additional probes of physics beyond
the standard model. Among other applications, this programme is relevant for extensions of the
standard model that propose a composite nature for the Higgs field, new top-quark partners, or
dark matter candidates, such as those based on 𝑆𝑝(4) gauge theories, recently studied numerically
in, e.g., Refs. [9–13]. To understand the strength of the gravitational waves originated by the
phase transition in a given theory, non-perturbative calculations of relevant observables need to be
performed. In this contribution, we report on a calculation using the the linear logarithmic relaxation
(LLR) algorithm [14] in 𝑆𝑈 (3) Yang-Mills. For this system, a high-precision calculation of the
latent heat has been recently provided in Ref. [15] . A calculation using a similar methodology to
the one we discuss here but targeting 𝑆𝑈 (4) has been discussed in Ref. [16]. Parts of this work have
been reported already in Ref. [17], to which we refer the reader for complementary discussions. A
more extended publication is in preparation [18].

The rest of this work is structured as follows. In Sect. 2 we provide a description of the lattice
system, an exposition of the algorithm and a discussion of the numerical implementation. Section 3
reports on our numerical findings. Finally, our conclusions and an overview of future work are
given in Sect. 4.

2. Lattice setup and LLR simulation details

We consider a system discretised on an asymmetric lattice of size �̃�/𝑎4 = 𝑁𝑡 × 𝑁3
𝑠 , with 𝑎 the

lattice spacing. For convenience, we set 𝑎 = 1. The degrees of freedom are 𝑆𝑈 (𝑁𝑐) gauge fields
defined on the links of the lattice, 𝑈` (𝑖). The model is described by the path integral

𝑍 (𝛽) =
∫

D𝑈` (𝑖)𝑒−𝛽𝑆 , 𝑆 =

�̃�∑︁
𝑗=0

∑︁
`;a>`

(
1 − 1

𝑁𝑐

ℜ(Tr[𝑈`a ( 𝑗)])
)
, (1)

where 𝑆 is the Wilson action, with the sum running over the real component of the trace of all the
plaquettes,𝑈`a ( 𝑗), and 𝛽 = 2𝑁𝑐/𝑔2

0, with 𝑔0 the bare lattice gauge coupling. The finite temperature
setup is given by the condition 𝑁𝑠 ≫ 𝑁𝑡 , and the temperature 𝑇 is set by 𝑁𝑡 and 𝑎, as 𝑇 = (𝑁𝑡𝑎)−1.

𝑆𝑈 (𝑁𝑐) gauge theories undergo a deconfinement phase transition at some critical value of
the temperature 𝑇𝑐 (or, equivalently, of the coupling 𝛽𝑐). An order parameter for the transition is
the Polyakov loop vacuum expectation value, ⟨𝑙𝑝⟩, which detects the breaking of the Z𝑁𝑐

center
symmetry. For 𝑁𝑐 ≥ 3 the deconfinement phase transition is first order. A general feature of
first-order phase transitions at criticality is the coexistence of phases. Because of the free energy
barrier between the two equilibrium states, widely used local Monte Carlo update methods such as
the Metropolis and the heat-bath algorithms, have correlation times that grow exponentially with
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the volume. To overcome this issue, we explore the use of the LLR method [14], which has been
demonstrated to efficiently sample systems near criticality at first-order phase transitions [19, 20].

The LLR method is based on the determination of a suitable approximation of the density of
states 𝜌(𝐸) as a function of the energy 𝐸 through samplings restricted to energy intervals of fixed
widths 𝛿𝐸 in a dynamically relevant energy range [𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥]. In particular, the approximation
is provided in terms of a continuous piecewise function in each of the 𝑁 + 1 intervals centered at
energy values 𝐸𝑛,

𝜌(𝐸) ≈ 𝜌0 exp

(
𝑛−1∑︁
𝑘=0

(𝑎𝑘𝛿𝐸) + 𝑎𝑛 (𝐸 − 𝐸𝑛 + 𝛿𝐸/2)
)
, 𝐸𝑛 − 𝛿𝐸/2 ≤ 𝐸 ≤ 𝐸𝑛 + 𝛿𝐸/2 . (2)

Here 𝜌0 is a normalisation constant that drops out when computing averages of thermodynamic
observables and can hence be fixed arbitrarily. In order to compute the 𝑎𝑛, which are the a
priori unknown quantities appearing in the above relationship, expectation values of observables 𝑂
restricted to the interval [𝐸𝑛 − 𝛿𝐸/2, 𝐸𝑛 + 𝛿𝐸/2] are defined as

⟨⟨𝑂 (𝐸)⟩⟩𝑎𝑛 = N−1
∫

[𝐷𝜙]𝑂 (𝜙)𝑒−𝑎𝑛𝑆 [𝜙] (\ (𝑆[𝜙] − 𝐸𝑛 + 𝛿𝐸/2) − \ (𝑆[𝜙] − 𝐸𝑛 − 𝛿𝐸/2)) , (3)

N =

∫
[𝐷𝜙]𝑒−𝑎𝑛𝑆 [𝜙] (\ (𝑆[𝜙] − 𝐸𝑛 + 𝛿𝐸/2) − \ (𝑆[𝜙] − 𝐸𝑛 − 𝛿𝐸/2)) . (4)

We refer to those energy restricted variables as double angle expectation values. With these
definitions, 𝑎𝑛 is the solution of the stochastic equation

⟨⟨Δ𝐸⟩⟩𝑎𝑛 = ⟨⟨𝐸 − 𝐸𝑛⟩⟩𝑎𝑛 = 0 , (5)

which is determined with the Robbins-Monro [21] iterations

⟨⟨Δ𝐸⟩⟩𝑎𝑛 = ⟨⟨𝐸 − 𝐸𝑛⟩⟩𝑎𝑛 = 0, 𝑎
(𝑚+1)
𝑛 = 𝑎

(𝑚)
𝑛 −

12⟨⟨Δ𝐸⟩⟩
𝑎
(𝑚)
𝑛

𝛿2
𝐸
(𝑚 + 1)

. (6)

𝑎
(𝑚)
𝑛 → 𝑎𝑛 in the limit 𝑚 → ∞. Note that 𝑎𝑛 = 1/𝑡𝑛, with 𝑡𝑛 the micro-canonical inverse

temperature associated with the energy value 𝐸𝑛. In the numerical determination of the 𝑎𝑛, the
systematics related to the truncation of the Robbins-Monro (RM) recursion is handled by repeating
the calculation for each 𝑎𝑛 at fixed value of number of steps 𝑚 and bootstrapping the result in any
subsequent analysis. This enables us to swap the unknown truncation systematics with an easier to
treat statistical error. Ergodicity in our calculation is recovered via umbrella sampling, as described
in Ref. [20], according to which the size of the intervals are increased to Δ𝐸 = 2𝛿𝐸 , and consecutive
intervals are given an overlap region, (𝐸𝑛+1 − 𝐸𝑛). If two lattices in adjacent intervals are both
in the overlap region after a Robbins-Monro iteration, a swap of configurations between the two
intervals is attempted with a Metropolis step. When using umbrella sampling, the factor of 𝛿𝐸 in
equation 6 should be replaced with Δ𝐸 .

In this contribution we report on a numerical study for 𝑁𝑐 = 3 on a 𝑁𝑡 × 𝑁3
𝑠 = 4 × 203 lattice.

At this size, the system is tractable also with conventional Monte Carlo simulations consisting
of an admixture of heath-bath and Metropolis steps. This enables us to test the methodology
comparing relevant LLR results with more standard calculations. As the energy 𝐸 , we take the
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Figure 1: A sample of 20 RM sequences at a fixed value of 𝐸𝑛. Different colours are used for different
trajectories. The inset shows the obtained 𝑎

(𝑚)
𝑛 distribution at the truncation value 𝑚 = 500.

value of the action on a given configuration. The energy boundaries have been chosen to be
𝐸𝑚𝑖𝑛/6�̃� = 0.439487341 and 𝐸𝑚𝑎𝑥/6�̃� = 0.459698522, with the energy interval divided into 55
subintervals of width Δ𝐸/6�̃� = 0.000748562.

An example of 20 repeats of a Robbins-Monro’s trajectory is shown in Fig. 1. The plot
provides good evidence that for sufficiently large numbers of iterations𝑚 the sequences are normally
distributed around the asymptotic value, with a variance that decreases with 𝑚, in agreement with
the arguments reported in Ref. [19]. Fig. 2 shows the effectiveness of the replica exchange. While in
general the algorithm is efficient at swapping configurations across intervals, we note that trajectories
become dense at criticality. This is due to the dynamics of first-order phase transitions, which has
been investigated in Ref. [22].

3. Thermodynamic observables

Using the density of states calculated with the LLR algorithm, the canonical information on
the system can be recovered. If the observable 𝑂 depends on the energy, we can write the canonical
expectation value as the ratio of two numerical integrals,

⟨𝑂 (𝐸)⟩𝛽 =
1

𝑍 (𝛽)

∫
𝜌(𝐸)𝑂 (𝐸)𝑒−𝛽𝐸 , 𝑍 (𝛽) =

∫
𝜌(𝐸)𝑒−𝛽𝐸 , (7)

with 𝜌(𝐸) approximated using the expression in Eq. (2), where the limit 𝛿𝐸 → 0 should be taken.
Here we work at finite Δ𝐸/6�̃� = 0.000748562, having checked that for this value corrections in
𝛿𝐸 are negligible with respect to the quoted statistical errors. The integrals appearing in Eq. (7)
should extend over the whole range of allowed energies. However, standard thermodynamic
arguments state that only states around the energy of interest contribute. The range 𝐸/6�̃� ∈
[0.439487341, 0.459698522] has been chosen so that for all the 𝛽 values of interest the contributions
close to the boundaries are negligible.
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Figure 2: Trajectories for all intervals on a single repeat of the Robbins-Monro algorithm that includes the
replica swapping. The 𝑥 axis shows the RM iterations 𝑚, while the 𝑦 axis displays the value 𝑎 (𝑚)

𝑛 . The colour
follows the history of a lattice as it is swapped between overlapping intervals.

Two observables that depend on 𝐸 and are widely studied to characterise the phase transition
are the plaquette expectation

⟨𝑢𝑝⟩𝛽 = 1 − ⟨𝐸⟩𝛽/6�̃� (8)

and the specific heat
𝐶𝑉 (𝛽) ≡ ⟨𝑢2

𝑝⟩𝛽 − ⟨𝑢𝑝⟩2
𝛽 , (9)

the latter being the fluctuations of the former. Their reconstruction near criticality using the LLR
determined density of states is shown in Fig. 3. These values are compared to results from a
computation using standard lattice methods with 500,000 configurations. The plots show good
agreement between the two determinations, with the LLR having the advantage of providing a
dense set of points at negligible additional cost, since, once the approximated 𝜌(𝐸) has been
determined, 𝛽 is just a parameter in the numerical integration.

Following Refs. [19, 23], we can also compute general observables 𝐵 that do not have an
explicit functional form as a function of 𝐸 at a given coupling 𝛽 by carrying out measurements of
𝐵[𝜙] on configurations sampled at an inverse temperature 𝑎𝑛, with the sampling restricted to the
interval centered at 𝐸𝑛. The reconstructed canonical expectation of the observable is then

⟨𝐵[𝜙]⟩𝛽 =
1

𝑍 (𝛽)

𝑁∑︁
𝑛=0

𝛿𝐸𝜌(𝐸𝑛)⟨⟨𝐵[𝜙] exp (−𝛽𝑆[𝜙] + 𝑎𝑛 (𝑆[𝜙] − 𝐸𝑛))⟩⟩𝑎𝑛 . (10)

Once the full set of 𝑎𝑛 values were found, we generated 2000 configurations and measured the
action 𝑆 ≡ 𝐸 and the absolute value of the average Polyakov loop ⟨|ℓ𝑝 |⟩𝛽 . The average Polyakov
loop and the Polyakov loop susceptibility were determined with the LLR reconstruction prescription
and compared against standard importance sampling methods, as shown in Fig. 4. Once again, we
found excellent agreement between the two methods,
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(a) (b)

Figure 3: Thermodynamic observables measured with the LLR method (blue circles), compared to results
from standard importance sampling (black triangles), for 𝑆𝑈 (3) Yang-Mills gauge theory on a 4×203 lattice.
The blue curves are reconstructed observables from the LLR method with a finer resolution in 𝛽, restricted
to the region around the phase transition. Left panel: average plaquette ⟨𝑢𝑝⟩𝛽 against the coupling 𝛽. Right
panel: specific heat 𝐶𝑉 (𝛽) ≡ ⟨𝑢2

𝑝⟩𝛽 − ⟨𝑢𝑝⟩2
𝛽

against the coupling 𝛽.

Figure 4: Thermodynamic observables measured with the LLR method (blue circles), compared to results
from standard importance sampling (black triangles), for 𝑆𝑈 (3) Yang-Mills gauge theory on a 4×203 lattice.
The blue curves are reconstructed observables from the LLR method with a finer resolution in 𝛽, restricted
to the region around the phase transition. Left panel: average absolute value of the Polyakov loop ⟨|𝑙𝑝 |⟩𝛽
against the coupling 𝛽. Right panel: Polyakov loop susceptibility 𝜒𝑙 (𝛽) ≡ 𝑁3

𝑠 (⟨|𝑙𝑝 |2⟩𝛽 − ⟨|𝑙𝑝 |⟩2
𝛽
) against the

coupling 𝛽.
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Figure 5: Results of the LLR analysis of 𝑆𝑈 (3) Yang-Mills gauge theory on a 4× 203 lattice at the values of
the LLR parameters given in the text. Top panel: values of the 𝑎𝑛 against the centres of the energy intervals
𝐸𝑛, with a linear interpolation between the points. Bottom panel: reconstructed probability distribution
𝑃𝛽𝑐 (𝐸) of the energy 𝐸 at the critical coupling 𝛽𝑐. The horizontal dashed line shows the value of the critical
coupling, and the vertical lines are the average energy values at which 𝑎𝑛 = 𝛽𝑐, which correspond to the
locations of the extrema of the probability distribution.

Investigating the lattice system using the LLR method gives us access to its microcanonical
information. From this the probability distribution of the system at coupling 𝛽, 𝑃𝛽 (𝐸) can be
determined through the equations

𝑃𝛽 (𝐸) =
1
𝑍
𝜌(𝐸)𝑒−𝛽𝐸 . (11)

This quantity is displayed in Fig. 5, together with the values of 𝑎𝑛 determined in the relevant energy
interval, at the value of 𝛽 for which the two peaks have been found to have equal height, which
we take as a definition of 𝛽𝑐. The distance between the two peaks determines the strength of the
transition through the latent heat.

The density of states can be linked to the entropy 𝑠 of the lattice system, 𝑠 = log 𝜌(𝐸). With
this definition, and remembering that 𝑎𝑛 = 1/𝑡𝑛, the free energy of the thermodynamic system is
then obtained as

𝐹 = 𝐸 − 𝑡𝑠 . (12)

The behaviour of free-energy around the critical point shows the expected swallow-tail structure
that indicates the meta-stable first-order behaviour (see., e.g., Ref. [24]), as represented in Fig. 6.
The calculated values are obtained through the subtraction of a linear term to remove the effect of
the choice of 𝜌0 in the density of states, as shown in Ref. [17]. The critical point, i.e., the point
at which both phases are equally likely, corresponds to the point at which the free-energy curve
intersects itself.
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Figure 6: The free-energy for the 𝑆𝑈 (3) Yang-Mills gauge theory on a 4 × 203 lattice, computed with the
LLR method. Σ is a constant computed as the temperature average of 𝑠 − ln 𝜌0, where 𝜌0, as discussed in
Ref. [17].

4. Conclusion and outlook

Motivated by the increasing interest in gravitational-wave signatures of early universe, first-
order phase transitions, we have begun the investigations of thermal Yang-Mills theories using
the LLR algorithm. This method avoids long correlations due to metastabilities near criticality,
and hence produces more robust results with a contained calculation cost. Studying 𝑆𝑈 (3) gauge
theory, we have benchmarked the LLR calculation on a lattice for which local Monte Carlo updates
have a bearable cost, finding agreement between this method and more conventional approaches.
At the same time, we have provided accurate results for the probability distribution of the energy
at fine resolution and for the free energy, which is not accessible at our calculated precision with
traditional methods.
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