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1. Introduction

Even though the lattice discretization breaks supersymmetry (SUSY) explicitly, Curci and
Veneziano [1] showed for N = 1 supersymmetric Yang-Mills (SYM) that chiral symmetry and
supersymmetry can both be recovered in the continuum limit by tuning a single parameter, the
gluino mass. This approach has been successfully applied in numerical simulations providing also
first insights about the particle spectrum of the theory [2, 3].

In supersymmetric theories containing matter supermultiplets, such as SQCD, the number of
parameters that need fine tuning is significantly larger. A tuning based on Ward identities becomes
challenging. In particular renormalization coefficients of the supercurrent need to be determined
numerically in this approach. In this work we study the renormalization of the supercurrent and
compare non-perturbative effects to perturbation estimates.

As a first exploratory step we will study the renormalization of the supercurrent for N = 1
supersymmetric Yang-Mills (SYM) on the lattice. We will do so by computing, non-perturbatively,
the renormalization factors in a gauge-invariant renormalization scheme (GIRS) [4]. Furthermore,
we will compute the conversion factors from GIRS to MS scheme perturbatively in dimensional
regularization. Then we will be able to convert our lattice regularized GIRS renormalization factors
to the more standard MS scheme.

2. The model

N = 1 SYM is the simplest four-dimensional supersymmetric gauge theory. This theory
describes the strong interactions between the carriers of the gauge force, the gluons, and their super-
partners, the gluinos, which are Majorana fermions transforming under the adjoint representation
of the gauge group. The gluons are represented by the non-Abelian gauge field 𝑢𝑎𝜇 (𝑥) and the
gluinos by the fermionic field 𝜆𝑎 (𝑥), where 𝑎 = 1, ..., 𝑁2

𝑐 − 1. The on-shell Lagrangian for N = 1
in Euclidean space is

L =
1
4
𝑢𝑎𝜇𝜈𝑢

𝑎
𝜇𝜈 +

1
2
𝜆𝑎𝛾𝜇 (𝐷𝜇𝜆)𝑎, (1)

where 𝑢𝑎𝜇𝜈 is the non-Abeliean field strength tensor and 𝐷𝜇 is the gauge covariant derivative acting
as (𝐷𝜇𝜆)𝑎 = 𝜕𝜇𝜆

𝑎 + 𝑔 𝑓𝑎𝑏𝑐𝑢
𝑏
𝜇𝜆

𝑏. The infinitesimal supersymmetry transformation leaving the
action of the theory invariant is given by

𝛿𝑢𝑎𝜇 (𝑥) = −𝑖𝜉𝛾𝜇𝜆𝑎 (𝑥)

𝛿𝜆𝑎 (𝑥) = 1
2
𝜎𝜇𝜈𝑢

𝑎
𝜇𝜈 (𝑥)𝜉, (2)

where 𝜎𝜇𝜈 = 1
2 [𝛾𝜇, 𝛾𝜈] and 𝜉 is a Grassmann variable corresponding to the infinitesimal pa-

rameter of the transformation. Applying Noether’s theorem to the classical theory, the symmetry
transformation Eq.(2) leads to the conserved supercurrent

𝑆𝜇 (𝑥) ≡ −𝜎𝜈𝜌𝛾𝜇tr𝑐 ( 𝑢𝜈 𝜌 (𝑥)𝜆(𝑥)). (3)

Defining the theory at the quantum level requires regularization and renormalization which leads to
important modifications. On the lattice, supersymmetry is broken by the addition of a gluino mass
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Supercurrent renormalization I. Soler

term and by the explicit breaking of Lorentz symmetry. Under renormalization the mass term gets
additively renormalised and the supercurrent mixes with another dimension 7/2 operator

𝑇𝜇 (𝑥) ≡ 2 𝛾𝜈tr𝑐 ( 𝑢𝜇 𝜈 (𝑥)𝜆(𝑥)). (4)

The corresponding Ward identity for the supercurrent after such modification reads as

𝑍𝑆𝑆

〈
∇𝜇𝑆𝜇 (𝑥)𝑄(𝑦)

〉
+ 𝑍𝑆𝑇

〈
∇𝜇𝑇𝜇 (𝑥)𝑄(𝑦)

〉
= 𝑚𝑆

〈
𝜒(𝑥)𝑄(𝑦)

〉
+𝑂 (𝑎), (5)

where 𝑍𝑆𝑆 and 𝑍𝑆𝑇 are the renormalization coefficients of the supercurrent 𝑆𝑅𝜇 = 𝑍𝑆𝑆𝑆𝜇 + 𝑍𝑆𝑇𝑇𝜇

and 𝑚𝑠 is the renormalized gluino mass; 𝑄(𝑦) can be any operator localized at a point 𝑦 ≠ 𝑥.
We will explore in this work the renormalization of the Supercurrent operators 𝑆𝜇, 𝑇𝜇 on the

lattice both numerically by Monte-Carlo simulations and using perturbation theory.

3. Renormalization and GIRS scheme

Our main goal is to compute the renormalization of the supercurrent both perturbatively and
non-perturbatively. Therefore the first step is to decide on a proper renormalization scheme that can
be applicable in both situations. In this work we will use the GIRS scheme [4] which is reminiscent
of the X-space renormalization scheme. The GIRS is defined through the renormalization conditions

⟨OGIRS
𝑋 (𝑥)OGIRS

𝑌 (𝑦)⟩|
𝑥−𝑦=�̄� ≡ 𝑍GIRS

𝑋 𝑍GIRS
𝑌 ⟨OB

𝑋 (𝑥)OB
𝑌 (𝑦)⟩|𝑥−𝑦=�̄� = ⟨O𝑋 (𝑥)O𝑌 (𝑦)⟩tree |

𝑥−𝑦=�̄� ,

for 𝑋,𝑌 two operators of interest and (𝑥 ≠ 𝑦) in order to avoid potential contact terms; the
superscript 𝐵 denotes bare quantities. This scheme is appealing because the two-point Green
functions ⟨OB

𝑋
(𝑥)OB

𝑌
(𝑦)⟩|

𝑥−𝑦=�̄� can be computed both non-perturbatively and also in perturbation
theory. Even more important, choosing gauge-invariant operators, only the mixing between these
operators and other gauge-invariant operators is relevant, which makes this scheme particularly
suitable for lattice computations. Considering the gauge invariant operators O𝑋,O𝑌 = 𝑆𝜇, 𝑇𝜇 the
resulting mixing matrix relating the bare and renormalized supercurrent operators is

©«
𝑆𝑅𝜇

𝑇𝑅
𝜇

ª®¬ = ©«
𝑍𝑆𝑆 𝑍𝑆𝑇

𝑍𝑇𝑆 𝑍𝑇𝑇

ª®¬ ©«
𝑆𝐵𝜇

𝑇𝐵
𝜇

ª®¬ . (6)

To determine the 4 elements of the mixing matrix 𝑍 we need 4 conditions:

• Three conditions can be imposed by considering expectation values between the two mixing
operators 1

𝐺𝑆 𝑆
𝜇𝜈 (𝑥, 𝑦) ≡ ⟨𝑆𝜇 (𝑥) 𝑆𝜈 (𝑦)⟩ , 𝐺𝑇 𝑇

𝜇𝜈 (𝑥, 𝑦) ≡ ⟨𝑇𝜇 (𝑥) 𝑇 𝜈 (𝑦)⟩ ,

𝐺𝑆 𝑇
𝜇𝜈 (𝑥, 𝑦) ≡⟨𝑆𝜇 (𝑥) 𝑇 𝜈 (𝑦)⟩. (7)

1A bar on 𝑆𝜇 , 𝑇𝜇 denotes the corresponding charge conjugates
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• A fourth condition can be imposed on two-point Green’s functions involving products of 𝑆𝜇
(or 𝑇𝜇) with other gauge-invariant operators of equal or lower dimension. The only such
operator with compatible behaviour under the Lorentz group is the Gluino-Glue operator
O(𝑥) ≡ 𝜎𝜇𝜈 tr𝑐 ( 𝑢𝜇𝜈 (𝑥)𝜆(𝑥)) and a corresponding Green’s function is

𝐺O 𝑆
𝜇 (𝑥, 𝑦) ≡ ⟨O(𝑥) 𝑆𝜇 (𝑦)⟩. (8)

There is a variety of ways to imposed the GIRS renormalization conditions. Especially suitable for
numerical lattice investigations is the following form where we integrate over the spatial components
of 𝑧 = 𝑦 − 𝑥 = (®𝑧, 𝑡) for the sake of improving the signal∫

𝑑3®𝑧 Tr{
[
𝐺𝑆 𝑆

𝜇𝜈 (𝑥, 𝑦)
]GIRS

𝑃𝜈𝜇} =

∫
𝑑3®𝑧 Tr{

[
𝐺𝑆 𝑆

𝜇𝜈 (𝑥, 𝑦)
] tree

𝑃𝜈𝜇}, (9)∫
𝑑3®𝑧 Tr{

[
𝐺𝑇 𝑇

𝜇𝜈 (𝑥, 𝑦)
]GIRS

𝑃𝜈𝜇} =

∫
𝑑3®𝑧 Tr{

[
𝐺𝑇 𝑇

𝜇𝜈 (𝑥, 𝑦)
] tree

𝑃𝜈𝜇}, (10)∫
𝑑3®𝑧 Tr{

[
𝐺𝑆 𝑇

𝜇𝜈 (𝑥, 𝑦)
]GIRS

𝑃𝜈𝜇} =

∫
𝑑3®𝑧 Tr{

[
𝐺𝑆 𝑇

𝜇𝜈 (𝑥, 𝑦)
] tree

𝑃𝜈𝜇}, (11)∫
𝑑3®𝑧 Tr{

[
𝐺𝑆 O

𝜇 (𝑥, 𝑦)
]GIRS

𝑃𝜇} =

∫
𝑑3®𝑧 Tr{

[
𝐺𝑆 O

𝜇 (𝑥, 𝑦)
] tree

𝑃𝜇}. (12)

𝑃𝜈𝜇 = 𝛾𝜇𝛾4𝛾𝜈 and 𝑃𝜇 = 𝛾𝜇𝛾4 are projectors acting on the Dirac space that project to states
transforming properly under parity, time reversal and charge conjugation. The repeated indices 𝜇, 𝜈
are not summed over and there is a freedom on which components 𝜇, 𝜈 to choose. However, the
operator components need to be the same in all GIRS conditions Eq. (9–12), as in principle, in this
scheme, different components could give different renormalization factors. The tree level values on
the right hand side of Eq. (9–12) after spatial integration are∫

𝑑3®𝑧 Tr
[
𝐺𝑆𝑆, tree

𝜇𝜈 (𝑥, 𝑦) 𝑃𝜈𝜇

]
= − (𝑁2

𝑐 − 1) 𝑡
𝜋2 |𝑡 |5

(1 − 𝛿𝜇4 − 𝛿𝜈4 − 3 𝛿𝜇𝜈 + 4 𝛿𝜇4 𝛿𝜈4), (13)∫
𝑑3®𝑧 Tr

[
𝐺𝑇𝑇, tree

𝜇𝜈 (𝑥, 𝑦) 𝑃𝜈𝜇

]
=

(𝑁2
𝑐 − 1) 𝑡

4𝜋2 |𝑡 |5
(2 + 𝛿𝜇4 + 𝛿𝜈4 + 3 𝛿𝜇𝜈 − 4 𝛿𝜇4 𝛿𝜈4), (14)∫

𝑑3®𝑧 Tr
[
𝐺𝑆𝑇, tree

𝜇𝜈 (𝑥, 𝑦) 𝑃𝜈𝜇

]
= − (𝑁2

𝑐 − 1) 𝑡
2𝜋2 |𝑡 |5

(1 − 𝛿𝜇4 − 𝛿𝜈4 − 3 𝛿𝜇𝜈 + 4 𝛿𝜇4 𝛿𝜈4), (15)∫
𝑑3®𝑧 Tr

[
𝐺𝑆O, tree

𝜇 (𝑥, 𝑦) 𝑃𝜇

]
= 0. (16)

It is instructive to write out the full set of GIRS conditions in terms of the bare correlators. They
lead to a set of quadratic equations for the renormalization factors

𝑍2
𝑆𝑆 Tr

[
𝐺𝑆𝑆

𝜇𝜈𝑃𝜈𝜇

]
+ 𝑍𝑆𝑆 𝑍𝑆𝑇 (Tr

[
𝐺𝑆𝑇

𝜇𝜈𝑃𝜈𝜇

]
+ Tr

[
𝐺𝑇𝑆

𝜇𝜈𝑃𝜈𝜇

]
) + 𝑍2

𝑆𝑇 Tr
[
𝐺𝑇𝑇

𝜇𝜈𝑃𝜈𝜇

]
= Tr

[
𝐺𝑆𝑆,tree

𝜇𝜈 𝑃𝜈𝜇

]
,

𝑍2
𝑇𝑆 Tr

[
𝐺𝑆𝑆

𝜇𝜈𝑃𝜈𝜇

]
+ 𝑍𝑇𝑆 𝑍𝑇𝑇 (Tr

[
𝐺𝑆𝑇

𝜇𝜈𝑃𝜈𝜇

]
+ Tr

[
𝐺𝑇𝑆

𝜇𝜈𝑃𝜈𝜇

]
) + 𝑍2

𝑇𝑇 Tr
[
𝐺𝑇𝑇

𝜇𝜈𝑃𝜈𝜇

]
= Tr

[
𝐺𝑇𝑇,tree

𝜇𝜈 𝑃𝜈𝜇

]
,

𝑍𝑆𝑆

(
𝑍𝑇𝑆 Tr

[
𝐺𝑆𝑆

𝜇𝜈𝑃𝜈𝜇

]
+ 𝑍𝑇𝑇 Tr

[
𝐺𝑆𝑇

𝜇𝜈𝑃𝜈𝜇

] )
+ 𝑍𝑆𝑇

(
𝑍𝑇𝑆 Tr

[
𝐺𝑇𝑆

𝜇𝜈𝑃𝜈𝜇

]
+ 𝑍𝑇𝑇 Tr

[
𝐺𝑇𝑇

𝜇𝜈𝑃𝜈𝜇

] )
=

Tr
[
𝐺𝑆𝑇,tree

𝜇𝜈 𝑃𝜈𝜇

]
,

𝑍𝑂

(
𝑍𝑆𝑆 Tr

[
𝐺𝑆𝑂

𝜇 𝑃𝜇

]
+ 𝑍𝑆𝑇 Tr

[
𝐺𝑇𝑂

𝜇 𝑃𝜇

] )
= Tr

[
𝐺𝑆𝑂,tree

𝜇 𝑃𝜇

]
= 0, (17)
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where on the last equation we used the renormalization of the Gluino-Glue operator O𝑅 = 𝑍OO𝐵

and Eq. (16). From Eq. (13–15) one can see that the particular choice of temporal indices for either
𝜇 or 𝜈 will lead to a vanishing tree level value on the first equation in (17). This in combination with
the last equation above would result in vanishing or indeterminate value for 𝑍𝑆𝑆 or 𝑍𝑆𝑇 . Therefore
the only allowed components 𝜇, 𝜈 are the spatial ones.

4. Perturbative results in dimensional regularization and conversion factors to MS

Instead of comparing perturbative and non-perturbative results on the GIRS scheme we will
follow a different approach. We will convert our results from GIRS scheme to MS using the
conversion factors 𝐶𝐺𝐼𝑅𝑆,MS. This comes with the advantage that MS is more amenable to
perturbation theory and the fitting of the 𝑍 factors on the numerical side is easier (see next section).
The conversion factors 𝐶𝐺𝐼𝑅𝑆,MS are the factors relating MS renormalized and GIRS renormalized
operators

©«
𝐶

GIRS, MS
𝑆𝑆

𝐶
GIRS, MS
𝑆𝑇

𝐶
GIRS, MS
𝑇𝑆

𝐶
GIRS, MS
𝑇𝑇

ª®®¬ ·
©«
𝑍

R, GIRS
𝑆𝑆

𝑍
R, GIRS
𝑆𝑇

𝑍
R, GIRS
𝑇𝑆

𝑍
R, GIRS
𝑇𝑇

ª®®¬ =
©«
𝑍

R, MS
𝑆𝑆

𝑍
R, MS
𝑆𝑇

𝑍
R, MS
𝑇𝑆

𝑍
R, MS
𝑇𝑇

ª®®¬ , (18)

where R stands for a chosen regularization scheme and the conversion factors themselves are regu-
larization independent. We first obtained the conversion factors by computing the renormalization
constants to one-loop in perturbation theory in dimensional regularization both for the MS and the
GIRS scheme. From the action defined by the Lagrangian Eq. (1), after applying the conventional
Faddev-Popov method, one can obtain the corresponding bare Green’s functions at tree-level and
to one-loop order in dimensional regularization (DR), involving respectively, the one-loop and
two-loop Feynman diagrams of Fig. 1.

1 2 3

4 5 6 7

111098

Figure 1: One-loop and two-loop Feynman diagrams contributing to the tree-level and one-loop two-point
Green’s functions of Eqs. (7) and (8). A wavy (solid, dashed) line represents gluons (gluinos, ghosts). The
two crosses denote the insertions of operators 𝑆𝜇, 𝑇𝜈 ,O appearing in the definition of each two-point function.

As is standard practice, the pole terms (1/𝜀𝑛, 𝑛 ∈ Z+) are removed by defining the MS mixing
matrix elements to have only negative integer powers of 𝜀, i.e., 𝑍DR,MS

𝑖 𝑗
= 𝛿𝑖 𝑗 + 𝑔2(𝑧𝑖 𝑗/𝜀) + O(𝑔4),

5
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where 𝑖, 𝑗 = 𝑆, 𝑇 and 𝑍
DR,MS
O = 1 + 𝑔2(𝑧O/𝜀) + O(𝑔4). Our results for 𝑍DR,MS

𝑖 𝑗
, 𝑍DR,MS

O read

𝑍
DR,MS
𝑆𝑆

= 1 + O(𝑔4), (19)

𝑍
DR,MS
𝑆𝑇

= O(𝑔4), (20)

𝑍
DR,MS
𝑇𝑆

=
𝑔2

16 𝜋2
3𝑁𝑐

2𝜀
+ O(𝑔4), (21)

𝑍
DR,MS
𝑇𝑇

= 1 − 𝑔2

16 𝜋2
3𝑁𝑐

𝜀
+ O(𝑔4), (22)

𝑍
DR,MS
O = 1 − 𝑔2

16 𝜋2
3𝑁𝑐

𝜀
+ O(𝑔4), (23)

which agree with our recent one-loop calculations in Refs. [5, 6]. By combining our one-loop
results for the mixing matrix in GIRS Eqs. (17) and in MS Eqs. (19 – 22), we extract the one-loop
conversion factors

𝐶
GIRS, MS
𝑆𝑆

= 1 −
𝑔2

MS
16𝜋2

17𝑁𝑐

6
+ O(𝑔4

MS
), (24)

𝐶
GIRS, MS
𝑆𝑇

=
𝑔2

MS
16𝜋2 4𝑁𝑐 + O(𝑔4

MS
), (25)

𝐶
GIRS, MS
𝑇𝑆

= −
𝑔2

MS
16𝜋2

3𝑁𝑐

2

(
2
3
+ 2𝛾𝐸 + ln( �̄�2𝑎 𝑡2)

)
+ O(𝑔4

MS
), (26)

𝐶
GIRS,MS
𝑇𝑇

= 1 +
𝑔2

MS
16𝜋2 𝑁𝑐

(
7
6
+ 6𝛾𝐸 + 3 ln( �̄�2𝑎 𝑡2)

)
+ O(𝑔4

MS
). (27)

5. Non-perturbative results

For the lattice discretization of N = 1 SYM we employed: a tree-level Symanzik improved
gauge action and Wilson fermions for the gluino fields. The action reads2

S𝐿
SYM =

∑︁
𝑥

{
2𝑎4

𝑔2


5
3

∑︁
plaq.

Re tr𝑐 (1 −𝑈plaq.) −
1

12

∑︁
rect.

Re tr𝑐 (1 −𝑈rect.)
 +

∑︁
𝑦

𝑎3

2𝜅
�̄�(𝑥)𝐷𝑊𝜆(𝑦)

}
,

(28)

where, 𝑈plaq. (𝑈rect.) denotes 1×1 (2×1) rectangular Wilson loops and the lattice Wilson operator is
represented in terms of the hopping parameter 𝜅 ≡ 1/(2𝑚0 + 8) as

𝐷𝑊 = 1 − 𝜅
[
(1 − 𝛾𝜇) (𝑉𝜇 (𝑥))𝛿𝑥+𝜇,𝑦 + (1 + 𝛾𝜇) (𝑉†

𝜇 (𝑥 − 𝜇))𝛿𝑥−𝜇,𝑦
]
. (29)

One-level of stout smearing was used on the links 𝑉𝜇 (𝑥), which in the adjoint representation are
given by 𝑉𝑎𝑏

𝜇 = 2 trc [𝑈†
𝜇 (𝑥)𝑇𝑎𝑈𝜇 (𝑥)𝑇𝑏].

We considered the configurations from earlier works [3, 7] with ensembles based on two
different gauge groups 𝑆𝑈 (2) and 𝑆𝑈 (3). In case of the gauge group 𝑆𝑈 (3) the lattice action is

2tr𝑐 denotes trace over color matrices.
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different, see [7] for details. The ensembles were generated at two different lattice sizes 𝑉 = 𝐿3 ×𝑇

of 𝑉1 = 243 × 48 and 𝑉2 = 323 × 64 along with different values of the coupling constant 𝛽 and
different mass parameters 𝜅. As the behaviour of the renormalization constant did not change
qualitatively from the different ensembles, we will present here the ones based on the 𝑆𝑈 (2) group
with a lattice size of 𝑉1 = 243 × 48, two different mass parameters 𝜅 = 0.14925, 0.14920 and a
gauge coupling of 𝛽 = 1.75. The complete set of results for all ensembles are collected in [8]. For
comparison of the results, the lattice spacing can be estimated using the QCD Sommer scale value
𝑟0 = 0.5 fm which leads to a lattice spacing of 𝑎 = 0.0554(11) fm.

The supercurrent and O operators are represented on the lattice using clover plaquettes
�̂�

𝛼𝛽
𝜇𝜈 (𝑥, 𝑡) and gluino fields 𝜆(𝑥). The correlators between 𝑆𝜇, 𝑇𝜇, and O take the following

generic omitting Lorentz, spinor and color indices

⟨𝐴(𝑡)𝐵(0)⟩ ≡
∑︁
®𝑥, ®𝑦

⟨𝐴(®𝑥, 𝑡)𝐵(®𝑦, 0)⟩ =
∑︁
®𝑥, ®𝑦

⟨Tr[Γ�̂� (®𝑥, 𝑡)𝐷−1(®𝑥, 𝑡 | ®𝑦, 0)�̂� (®𝑦, 0)Γ′]⟩𝐺 = 𝐶𝛼𝛽, (30)

for 𝐴, 𝐵 = 𝑆𝜇, 𝑇𝜇,O. The expectation value ⟨·⟩𝐺 indicates that the fermion has been integrated out.
Γ and Γ′ collect the combination of gamma matrices of each operator and the inverse of the Dirac
operator 𝐷−1(𝑥 |𝑦) propagates a gluino from 𝑥 to 𝑦. In order to use the set of four GIRS conditions
Eq. (9–12) we are constrained to use spatial projectors 𝑃𝑖 = 𝛾4𝛾𝑖 and 𝑃𝑖 𝑗 = 𝛾𝑖𝛾4𝛾 𝑗 with 𝑖 = 1, 2, 3.
We chose 𝑖 = 𝑗 which has the advantage of giving better signal to noise ratio. As an example we
present two of the correlators in Fig. 2.

t

Tr
⟨O

(𝑡)
𝑆
𝑖
(0
)𝑃

𝑖⟩

t

Tr
⟨O

(𝑡)
𝑇
𝑖
(0
)𝑃

𝑖⟩

Figure 2: Correlators Tr⟨O(𝑡)𝑆𝑖 (0)𝑃𝑖⟩ and Tr⟨O(𝑡)𝑇𝑖 (0)𝑃𝑖⟩ computed numerically on the ensemble with
𝜅 = 0.14925 and 𝛽 = 1.75 of the 𝑉 = 243 × 48 lattice.

Due to the gauge nature of these operators one is expected to find a substantial amount of noise
on the signal. To improve the signal we used isotropy, time reversal, and charge conjugation to
average equivalent correlators. We used wall sources for the operators and we average over spatial
positions of the sink. This amounts to summing up over all ®𝑥 and ®𝑦 contributions of the correlator.
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Using the GIRS conditions which on the lattice take the following form

1
3𝐿3

∑︁
®𝑥, ®𝑦

∑︁
𝑖

Tr
[
𝐺

𝑆𝑆, GIRS
𝑖𝑖

((®𝑥, 𝑡), (®𝑦, 0)) 𝛾𝑖𝛾4𝛾𝑖

]
=

2(𝑁2
𝑐 − 1)𝑡

𝜋2 |𝑡 |5
, (31)

1
3𝐿3

∑︁
®𝑥, ®𝑦

∑︁
𝑖

Tr
[
𝐺

𝑇𝑇, GIRS
𝑖𝑖

((®𝑥, 𝑡), (®𝑦, 0)) 𝛾𝑖𝛾4𝛾𝑖

]
=

5(𝑁2
𝑐 − 1)𝑡

4𝜋2 |𝑡 |5
, (32)

1
3𝐿3

∑︁
®𝑥, ®𝑦

∑︁
𝑖

Tr
[
𝐺

𝑆𝑇, GIRS
𝑖𝑖

((®𝑥, 𝑡), (®𝑦, 0)) 𝛾𝑖𝛾4𝛾𝑖

]
=

(𝑁2
𝑐 − 1)𝑡
𝜋2 |𝑡 |5

, (33)

1
3𝐿3

∑︁
®𝑥, ®𝑦

∑︁
𝑖

Tr
[
𝐺

𝑆O, GIRS
𝑖

((®𝑥, 𝑡), (®𝑦, 0)) 𝛾4𝛾𝑖

]
= 0. (34)

Again these conditions lead to a set of second order equations for the renormalization factors
𝑍 similar to Eq. (17) but in their lattice discretized versions.

In GIRS the time separation 𝑡 represents an energy scale for the renormalization constants. The
short distance part is dominated by contact terms and lattice artifacts and has to be neglected. We
use the conversion factors explained in previous sections to convert GIRS to MS scheme. This is
expected to replace the dependence on the GIRS scale with the the one on the 𝜇 energy scale of the
MS scheme. After the conversion, a plateau like behaviour is expected at larger distances and the
dependence on time separation is replaced by a dependence on the energy scale. More importantly,
converting to the MS scheme will allow us to compare directly with other results in perturbation
theory.

The result after applying the conversion factors to the 𝑍𝑆𝑇/𝑍𝑆𝑆 factor is shown in Fig. 3. We
fitted the data points in time interval 𝑡 ∈ [5, 11] where contact terms have decayed and the noise has
still not overcome the signal. The value obtained is 𝑍𝑆𝑇/𝑍𝑆𝑆 = −0.0418(84) while the perturbative
one found in [5] but without clover improvement is 𝑍𝑆𝑇/𝑍𝑆𝑆 = 0.10080.

6. Summary and conclusions

We studied the renormalization of the supercurrent for N = 1 SYM. We extracted the renor-
malization factors for the 𝑆𝜇 and 𝑇𝜇 operators in the GIRS scheme from bare correlators computed
numerically on the lattice. By finding the conversion factors𝐶𝐺𝐼𝑅𝑆,MS perturbatively, we translated
the non-perturbative results to the MS scheme where we could compare to perturbation theory.

We observed a significant disagreement between the perturbative and non-perturbative deter-
mination of the 𝑍 factors. Yet we have room for improvement: simulating closer to the perturbative
regime, including two-loop terms in the perturbative computation or including smearing could im-
prove the agreement. They are feasible albeit complicated tasks, without any conceptual hindrances.

It is worth reiterating at this point that the determination of 𝑍L,MS
𝑆𝑇

/𝑍L,MS
𝑆𝑆

via GIRS, despite
the present discrepancy with perturbative estimates, stands to be very useful in the study of more
complicated theories, such as supersymmetric QCD, for the purpose of reducing the number of
undetermined parameters in Ward identities.
Acknowledgements: M.C., H.P. and G.S. acknowledge financial support from the European Re-
gional Development Fund and the Cyprus Research and Innovation Foundation (Projects: EX-
CELLENCE/0918/0066 and EXCELLENCE/0421/0025. M.C. also acknowledges partial support

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
2
2

Supercurrent renormalization I. Soler

from the Cyprus University of Technology under the "POSTDOCTORAL" program. G.S acknowl-
edges financial support from H2020 project PRACE-6IP (Grant agreement ID: 823767). G.B.
and I.S. acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) Grant
No. 432299911 and 431842497

GIRS scheme

t

𝑍
𝑆
𝑇
/𝑍

𝑆
𝑆

MS scheme

t

Figure 3: 𝑉 = 243×48 lattice with 𝜅 = 0.14925 (blue dots) and 𝜅 = 0.14920 (orange squares). The points on
the 𝜅 = 0.14920 ensemble are shifted in 𝑡 by +0.33 for visibility. The error bars were estimated by a jackknife
analysis and measurements were done every 8th step on Monte-Carlo time to reduce autocorrelations.

References

[1] G. Curci and G. Veneziano, Supersymmetry and the Lattice: A Reconciliation?, Nucl. Phys.
B 292 (1987) 555-572.

[2] S. Ali et al., Analysis of Ward identities in supersymmetric Yang-Mills theory, Eur. Phys. J. C
78 (2018) 404 [hep-lat/1802.07067].

[3] G. Bergner, P. Giudice, G. Münster, I. Montvay and S. Piemonte, The light bound states of
supersymmetric 𝑆𝑈 (2) Yang-Mills theory, JHEP 03 (2016) 080 [hep-lat/1512.07014].

[4] M. Costa et al., Gauge-invariant renormalization scheme in QCD: Application to fermion bilin-
ears and the energy-momentum tensor, Phys. Rev. D 103 (2021) 094509 [hep-lat/2102.00858].

[5] G. Bergner, M. Costa, H. Panagopoulos, I. Soler and G. Spanoudes, Perturbative renormal-
ization of the supercurrent operator in lattice N=1 supersymmetric Yang-Mills theory, Phys.
Rev. D 106 (2022) 034502 [hep-lat/2205.02012].

[6] M. Costa, H. Herodotou, P. Philippides and H. Panagopoulos, Renormalization and mixing of
the Gluino-Glue operator on the lattice, Eur. Phys. J. C 81 (2021), 401 [hep-lat/2010.02683].

[7] S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte and P. Scior, Numerical
results for the lightest bound states in N = 1 supersymmetric SU(3) Yang-Mills theory, Phys.
Rev. Lett. 122 (2019) 221601 [hep-lat/1902.11127].

9

https://doi.org/10.1016/0550-3213(87)90660-2
https://doi.org/10.1016/0550-3213(87)90660-2
https://doi.org/10.1140/epjc/s10052-018-5887-9
https://doi.org/10.1140/epjc/s10052-018-5887-9
https://arxiv.org/abs/1802.07067
https://doi.org/10.1007/JHEP03(2016)080
https://arxiv.org/abs/1512.07014
https://doi.org/10.1103/PhysRevD.103.094509
https://arxiv.org/abs/2102.00858
doi:10.1103/PhysRevD.106.034502
doi:10.1103/PhysRevD.106.034502
https://arxiv.org/abs/2205.02012
doi:10.1140/epjc/s10052-021-09173-x
https://arxiv.org/abs/2010.02683
doi:10.1103/PhysRevLett.122.221601
doi:10.1103/PhysRevLett.122.221601
https://arxiv.org/abs/1902.11127


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
2
2

Supercurrent renormalization I. Soler

[8] G. Bergner, M. Costa, H. Panagopoulos, S. Piemonte, I. Soler and G. Spanoudes, Nonper-
turbative renormalization of the supercurrent in N = 1 Supersymmetric Yang-Mills Theory,
[hep-lat/2209.13934].

10

https://arxiv.org/abs/2209.13934

	Introduction
	The model
	Renormalization and GIRS scheme
	Perturbative results in dimensional regularization and conversion factors to 
	Non-perturbative results
	Summary and conclusions

