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1. Introduction

In recent years, lattice QCD has been taking an important and crucial role in the precision
test of the standard model, as represented by the calculation of QCD contributions to the muon
g-2 (see, e.g., [1]). Empowered by the recent hardware and experimental developments, target
precision is becoming in a notable order, for which calculation on fine lattices has become an urgent
demand. However, as we reach the continuum limit, we face the infamous critical slowing down,
often characterized by long autocorrelation of the topological charge. Such long autocorrelations
make the calculation at fine lattices inefficient adding extreme computational cost to the simple
lattice volume scaling.

There have been many attempts to overcome the critical slowing down [2–13], and recent studies
are presented thoroughly at the conference [14–29]. We in this work concentrate on developing
the idea of the trivializing map proposed by Lüscher [7] (cf. the Nicolai map [30]), which maps a
finite 𝛽 theory to the 𝛽 = 0 theory. Evidently, if we manage to construct such a map, one can obtain
configurations on a fine lattice from the configurations of purely random 𝑆𝑈 (3) fields.

In [7], Lüscher proved the existence of the map in the form of a gradient flow, and gave a way
to construct the flow as a 𝑡-expansion (𝑡: flow time) as we review in section 2. To the leading order
in 𝑡, this flow corresponds to the Wilson flow for the plaquette action. Following this work, Engel
and Schaefer [31] tested the method by implementing the leading order gradient flow in a 𝐶𝑃𝑁−1

model, whose result asserted its performance to be rather negative observing the scaling towards
the continuum limit.

The aim of this work is to give an alternative way to construct an approximate trivializing
map. In our method, the coefficients in the flow kernel are determined from lattice estimates of
Wilson loops by using a Schwinger-Dyson equation. This method is versatile in the sense that: (1)
The basis for the flow kernel can be chosen by hand. (2) It can be applied to the general action
of interest without an analytical calculation. Here, the truncation effects and goodness of the flow
can be evaluated by a force norm. We perform the HMC [32] with the effective action obtained by
the Schwinger-Dyson method. The configuration generation part of the algorithm is the same as
[7]. We apply our method to Wilson and DBW2 actions and show that we can have better control
of the effective action than the 𝑡-expansion. Furthermore, in some cases, faster decorrelation (in
Monte Carlo steps) is observed for long-ranged observables by adding the extended shapes such as
rectangle and chair to the flow; however, the algorithmic overhead is still large and overwhelming
the gain. This contribution therefore reports the preliminary results in this direction.

The rest of this paper is organized as follows. Section 2 is a review of the trivializing
map including the 𝑡-expansion. In section 3, we first introduce a Schwinger-Dyson equation that
determines the coefficients of Wilson loops in the effective action. We then describe its use in
constructing an approximate trivializing map. Section 4 describes the results focusing on the norm
measuring the closeness of the effective action to the target action and the autocorrelation of the
smeared energy density. Section 5 is devoted for discussion.
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2. Trivializing map

2.1 Review of Lüscher’s construction

Following Lüscher [7], we consider a field transformation: F : 𝑉 ↦→ 𝑈, by which the original
action 𝑆(𝑈) of interest will be mapped to the effective action 𝑆eff (𝑉) according to the formula:∫

(𝑑𝑈) 𝑒−𝑆 (𝑈) =

∫
(𝑑𝑉) detF∗(𝑉) 𝑒−𝑆 (F(𝑉 ) )

≡
∫

(𝑑𝑉) 𝑒−𝑆eff (𝑉 ) , (1)

i.e.,

𝑆eff (𝑉) ≡ 𝑆(F (𝑉)) − ln det F∗(𝑉). (2)

The Jacobian matrix F∗(𝑉) can be defined by the local parameterization \𝑎𝑥,` of the field space:

𝑒\
𝑎
𝑥,`𝑇

𝑎

𝑈𝑥,`, (3)

where 𝑇𝑎 are the s𝑢(3) generators normalized as tr𝑇𝑎𝑇𝑏 = −(1/2)𝛿𝑎𝑏. Note that the Haar measure
can then be written as:

(𝑑𝑈) = const.
∏
𝑥,`,𝑎

𝑑\𝑎𝑥,` . (4)

The derivative 𝜕𝑎
𝑥,` ≡ 𝜕\𝑎

𝑥,`
|\=0 acts as

𝜕𝑎
𝑥,`𝑈𝑦,a = 𝛿𝑥,𝑦𝛿`,a𝑇

𝑎𝑈𝑥,` . (5)

Writing the indices in a short way as 𝐴 ≡ (𝑥, `, 𝑎), the Jacobian matrix F∗(𝑉) ≡ (F 𝐴𝐵
∗ (𝑉)) relates

the one-forms of the 𝑈-space and the 𝑉-space:

𝑑\𝐴𝑈 ≡ F 𝐴𝐵
∗ (𝑉)𝑑\𝐵𝑉 , (6)

where the subscript is supplied to distinguish the coordinates of the two field spaces.
Lüscher obtained the trivializing map by considering a flow F𝑡 : 𝑉 ↦→ 𝑈𝑡 ≡ F𝑡 (𝑉) and by

demanding the effective action at flow time 𝑡 to be:

𝑆eff,𝑡 (𝑉)
∗
= (1 − 𝑡)𝑆(F𝑡 (𝑉)), (7)

up to an irrelevant 𝑡-dependent constant which we ignore hereafter. The symbol ∗
= means it is a

relation we require so that the 𝑉-space action becomes trivial at 𝑡 = 1. We divide the trivializing
map F𝑡=1 into infinitesimal steps:

F𝑡=1 = F(𝑛−1) 𝜖 , 𝜖 ◦ F(𝑛−2) 𝜖 , 𝜖 ◦ · · · ◦ F0, 𝜖 , (8)

where 1 = 𝑛𝜖 , and use the gradient flow ansatz:

F𝑡 , 𝜖 (𝑈)𝑥,` = 𝑒−𝜖 𝑇𝑎𝜕𝑎
𝑥,` �̃�𝑡 (𝑈)𝑈𝑥,` . (9)
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The derivative acts on the direct argument of the function.1 Using that, for 𝑈′ ≡ F𝑡 , 𝜖 (𝑈),
𝑑 = 𝑑\𝐴

𝑈′𝜕
𝐴
𝑈′ = 𝑑\𝐴

𝑈
𝜕𝐴
𝑈

and

𝑑\𝑈′𝑎𝑥,` = −2tr[𝑇𝑎𝑑𝑈′
𝑥,`𝑈

′−1
𝑥,`], (10)

one finds for an infinitesimal Y,

F𝑡 , 𝜖 ,∗
𝑎
𝑥,` |𝑏𝑦,a = 𝛿𝑥,𝑦𝛿`,a𝛿

𝑎𝑏 − 𝜖𝜕𝑎
𝑥,`𝜕

𝑏
𝑦,a𝑆𝑡 − 𝜖𝛿𝑥,𝑦𝛿`,a 𝑓

𝑎𝑏𝑐𝜕𝑐𝑥,`𝑆𝑡 , (11)

where 𝑓 𝑎𝑏𝑐 ≡ −2tr
(
𝑇𝑎 [𝑇𝑏, 𝑇𝑐]

)
is the totally antisymmetric tensor. Therefore,

ln det F𝑡 , 𝜖 ,∗ = −𝜖 (𝜕𝐴)2𝑆𝑡 . (12)

We note that the ansatz (9) is equivalent to:

¤𝑈𝑡 ,𝑥,` =
𝑑

𝑑𝑡
F𝑡 (𝑉)𝑥,` = −𝑇𝑎𝜕𝑎

𝑥,`𝑆𝑡 (𝑈𝑡 )𝑈𝑡 ,𝑥,` . (13)

Rewriting eq. (7) as

ln det F𝑡 ,∗(𝑉)
∗
= −𝑡𝑆(F𝑡 (𝑉)), (14)

and by taking the 𝑡-derivative, we obtain the functional equation:

[−(𝜕𝐴)2 + 𝑡 (𝜕𝐴𝑆)𝜕𝐴]𝑆𝑡
∗
= 𝑆. (15)

Since the differential operator L𝑡 ≡ −(𝜕𝐴)2 + 𝑡 (𝜕𝐴𝑆)𝜕𝐴 is elliptic and there is an inner product that
makes L𝑡 a symmetric operator, it is invertible for finite lattice up to the constant function, which
is the zero-mode [7]. This fact suggests that the trivializing map formally exists.

Lüscher further gave a way to constructF𝑡=1 as a 𝑡-expansion, which was explicitly demonstrated
for the Wilson plaquette action:

𝑆𝑊 = − 𝛽

6
𝑊0, (16)

where 𝑊0 is the sum of plaquettes (see figure 1 for a graphical representation). The construction
begins with expanding 𝑆𝑡 as

𝑆𝑡 =
∑︁
𝑘≥0

𝑡𝑘𝑆 (𝑘 ) , (17)

whose convergence radius is proven to be finite for finite lattice [7]. Plugging the expansion into
eq. (15), we obtain the recurrence relation:

− (𝜕𝐴)2𝑆 (0) ∗
= 𝑆𝑊 , (18)

− (𝜕𝐴)2𝑆 (𝑘 ) ∗
= −(𝜕𝐴𝑆𝑊 ) (𝜕𝐴𝑆 (𝑘−1) ) (𝑘 ≥ 1). (19)

1Therefore, the expression 𝜕𝑎𝑥,`𝑆𝑡 (𝑈) can be thought of as a vector function of 𝑈: 𝜕𝑎𝑥,`𝑆𝑡 (𝑈) = (𝜕𝑎𝑥,`𝑆𝑡 ) (𝑈). We
use this convention throughout this contribution.
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Figure 1: Wilson loops that are relevant in the argument.

These relations will be solved in the space of Wilson loops. Note that the derivative operator 𝜕𝑎
𝑥,`

inserts 𝑇𝑎 before 𝑈𝑥,` or inserts −𝑇𝑎 after 𝑈†
𝑥,`. The contraction will then be calculated by the

completeness relation; for complex 3 × 3 matrices 𝐴 and 𝐵,

tr[𝑇𝑎𝐴𝑇𝑎𝐵] = −1
2

(
tr𝐴tr𝐵 − 1

3
tr𝐴𝐵

)
, (20)

tr[𝑇𝑎𝐴]tr[𝑇𝑎𝐵] = −1
2

(
tr𝐴𝐵 − 1

3
tr𝐴tr𝐵

)
. (21)

See figure 2 for examples shown graphically. Since 𝑊0 is an eigenfunction of −(𝜕𝐴)2, we have for
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Figure 2: Two representative actions of the differential operators: (Left) The plaquette is an eigenfunction
of the operator (𝜕𝑎)2. (Right) 𝜕𝑎 · 𝜕𝑎 · glues Wilson loops with a trace subtraction.

the leading order:

𝑆 (0) = − 𝛽

32
𝑊0. (22)

To obtain the next-to-leading order, we need the Wilson loops 𝑊0, · · · ,𝑊7 shown in figure 1. The
operator −(𝜕𝐴)2 can be represented in this subspace, and after inverting the matrix we get

𝑆 (1) =
𝛽2

192

(
− 4

33
𝑊1 +

12
119

𝑊2 +
1
33

𝑊3 −
5

119
𝑊4 +

3
10

𝑊5 −
1
5
𝑊6 +

1
9
𝑊7

)
. (23)

Since the operation 𝜕𝐴 · 𝜕𝐴· glues the Wilson loops in all possible ways, the number of relevant
Wilson loops increases for the higher orders in a combinatorial manner.
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2.2 Another look at the map from the space of effective actions

The reason for the rapid increase of the involved Wilson loop can be understood as follows.
First note that, as can be seen in eq. (13), the flow runs from the trivial theory to a nontrivial theory.
Correspondingly, the 𝑡-expansion around 𝑡 = 0 is an expansion around the trivial theory. At small
flow times, we only need to add the plaquettes in the effective action, and thus the expansion begins
with𝑊0. However, as we evolve the flow, the effective action goes through the non-trivial theories, at
which the wave-like particle picture should become relevant. To decrease these modes directly, we
expect that the extended Wilson loops (presumably summed in certain linear combinations) become
relevant. Therefore, obtaining the exact kernel for the trivializing map is extremely difficult, and
thus we are forced for practical reasons to choose a finite basis and construct the efficient flow kernel
that decreases the autocorrelations within the chosen subspace.

For this purpose, we reexamine the trivializing map from a different point of view, namely, from
the effective action. As we demonstrate momentarily, while the flow in configuration space, eq. (13),
evolves from the trivial theory to the finite 𝛽 theory, in the action perspective the flow time runs in
the opposite direction, from the finite 𝛽 theory to the trivial theory. We note that the difference is
just the way to see the map, and, if solved exactly, the two maps coincide. The difference, however,
can occur when we approximate the map, and such a functional space point of view allows us to
construct the map without using the 𝑡-expansion, whose example is the Schwinger-Dyson method
we give in section 3. To distinguish the maps in the two different viewpoints, we add the superscript
(𝑐) to the expressions derived in the previous configuration space viewpoint.

We define the effective action at time 𝑡, 𝑆𝑡 (we drop the subscript eff for notational simplicity),
by the following recurrence relation:

𝑆𝑡=0(𝑉) ≡ 𝑆𝑊 (𝑉), (24)
𝑆𝑡+𝜖 (𝑉) ≡ 𝑆𝑡 (F𝑡 , 𝜖 (𝑉)) − ln det F𝑡 , 𝜖 ,∗(𝑉), (25)

where F𝑡 , 𝜖 is again the map that increases 𝑡 by an amount 𝜖 , and F𝑡 , 𝜖 ,∗(𝑉) is its Jacobian matrix.
We here require that F𝑡 , 𝜖 satisfies the relation:

𝑆𝑡+𝜖 (𝑉)
∗
= 𝑆𝑡 (𝑉) − 𝜖𝑆𝑊 (𝑉), (26)

up to an irrelevant constant which we again ignore. Using eqs. (24) and (26), we obtain:

𝑆𝑡 (𝑉)
∗
= (1 − 𝑡)𝑆𝑊 (𝑉), (27)

and thus we have the trivializing map at 𝑡 = 1.

Note that the composition ordering of F𝑡 , 𝜖 will be the opposite from eq. (8). In fact, from the

6
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recurrence formula, we have

𝑆𝑡=𝑛𝜖 (𝑉) = 𝑆 (𝑛−1) 𝜖 (F(𝑛−1) 𝜖 , 𝜖 (𝑉)) − ln det F(𝑛−1) 𝜖 , 𝜖 ,∗(𝑉)
= 𝑆 (𝑛−2) 𝜖 (F(𝑛−2) 𝜖 , 𝜖 ◦ F(𝑛−1) 𝜖 , 𝜖 (𝑉))

− ln det F(𝑛−2) 𝜖 , 𝜖 ,∗(F(𝑛−1) 𝜖 , 𝜖 (𝑉)) − ln det F(𝑛−1) 𝜖 , 𝜖 ,∗(𝑉)
= · · ·
= 𝑆0(F0, 𝜖 ◦ · · · ◦ F(𝑛−1) 𝜖 , 𝜖 (𝑉))

−
𝑛−1∑︁
ℓ=0

ln det Fℓ 𝜖 , 𝜖 ,∗(F(ℓ+1) 𝜖 , 𝜖 ◦ · · · ◦ F(𝑛−1) 𝜖 , 𝜖 (𝑉)). (28)

We identify F𝑡 with the composite function:

F𝑡 ≡ F0, 𝜖 ◦ · · · ◦ F(𝑛−1) 𝜖 , 𝜖 , (29)

where the Jacobian matrix is given by

F𝑡 ,∗(𝑉) ≡
𝑛−1∏
ℓ=0

Fℓ 𝜖 , 𝜖 ,∗(F(ℓ+1) 𝜖 , 𝜖 ◦ · · · ◦ F(𝑛−1) 𝜖 , 𝜖 (𝑉)). (30)

The matrix product is taken in descending order from right to left. It is easy to see that 𝑆𝑡 is indeed
the effective action for the map F𝑡 :

𝑆𝑡 (𝑉) = 𝑆𝑊 (F𝑡 (𝑉)) − ln det F𝑡 ,∗(𝑉). (31)

To further rewrite the expression, we again use the gradient flow ansatz:

F𝑡 , 𝜖 (𝑉)𝑥,` = 𝑒−𝜖 𝑇𝑎𝜕𝑎
𝑥,` �̃�𝑡 (𝑉 )𝑉𝑥,` . (32)

Then the requirement (26) gives the functional equation for 𝑆𝑡 :

[−(𝜕𝐴)2 + (1 − 𝑡) (𝜕𝐴𝑆𝑊 )𝜕𝐴]𝑆𝑡
∗
= 𝑆𝑊 . (33)

Comparing eq. (33) with (15), we notice that

1 − 𝑡 = 𝑡 (𝑐) , (34)

and thus

𝑆𝑡 = 𝑆
(𝑐)
1−𝑡 (35)

and

F𝑡 , 𝜖 = F (𝑐)
1−𝑡 , 𝜖 . (36)

From eqs. (29) and (36), the map F𝑡 in the functional space viewpoint can be expressed with F (𝑐)
𝑡 , 𝜖

and 1 = 𝑛𝜖 as:

F𝑡=𝑚𝜖 = F (𝑐)
𝑛𝜖 ,𝜖 ◦ · · · ◦ F (𝑐)

(𝑛−𝑚+1) 𝜖 , 𝜖 . (37)

7
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In particular,

F1=𝑛𝜖 = F (𝑐)
𝑛𝜖 ,𝜖 ◦ · · · ◦ F (𝑐)

𝜖 , 𝜖 , (38)

F (𝑐)
1=𝑛𝜖 = F (𝑐)

(𝑛−1) 𝜖 , 𝜖 ◦ · · · ◦ F
(𝑐)

0, 𝜖 , (39)

which should agree in 𝜖 → 0.
We therefore have the same trivializing map, but the direction of the construction is from finite

𝛽 theory to the trivial theory (see figure 3). The complication is that it is not straightforward to

direction of construction
in the configuration 
space picture

! " #

! " $

direction of
construction
in the action
space picture

Figure 3: Direction of constructing trivializing maps.

expand in terms of 𝑡, as expected from the argument at the beginning of this section. We will solve
eq. (33) by picking up a finite basis, for which we need a way to project the entire function space to
the truncated space. For this purpose, we use a Schwinger-Dyson equation.

3. Schwinger-Dyson equation

In the Schwinger-Dyson method described below, we sequentially determine the flow from the
finite 𝛽 theory as explained in section 2.2. At each intermediate step, we determine the effective
couplings by a Schwinger-Dyson equation. The flow will be designed to decrease the couplings
from the lattice expectation values of Wilson loops.

3.1 Schwinger-Dyson equation for determining coupling constants

In this subsection, we review the use of a Schwinger-Dyson equation to determine the couplings
in effective actions, based on refs [33, 34] (see also [35, 36]). Suppose that the effective action 𝑆eff

is expressed as a sum of Wilson loops (and their products):

𝑆eff =
∑︁
𝑗

𝛽 𝑗𝑊 𝑗 . (40)

Then, the coefficients 𝛽 𝑗 satisfy the linear equation:∑︁
𝑗

𝛽 𝑗 ⟨𝜕𝐴𝑊 𝑗𝜕
𝐴𝑊𝑖⟩𝑆eff = ⟨(𝜕𝐴)2𝑊𝑖⟩𝑆eff , (41)

8
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where the expectation value ⟨·⟩𝑆eff is taken with respect to the action 𝑆eff . In fact, under the variation
𝛿𝑉 using 𝑊𝑖 in the gradient flow kernel:

𝛿𝑉𝑥,` ≡ −𝜖
∑︁
𝑥,`

𝑇𝑎 (𝜕𝑎
𝑥,`𝑊𝑖)𝑉𝑥,`, (42)

the path integral is invariant (we vary all the links (𝑥, `) at the same time):

0 = 𝛿

∫
(𝑑𝑉)𝑒−𝑆eff (𝑉 ) = 𝜖

∫
(𝑑𝑉)𝑒−𝑆eff (𝑉 ) [−(𝜕𝐴)2𝑊𝑖 + (𝜕𝐴𝑆eff)𝜕𝐴𝑊𝑖] . (43)

Combining eqs. (40) and (43), we obtain eq. (41).
The linear equation (41) allows us to obtain the couplings 𝛽 𝑗 from the lattice expectation

values. However, we generically need an infinite number of basis functions to fully parameterize
the action, and thus ⟨𝜕𝐴𝑊 𝑗𝜕

𝐴𝑊𝑖⟩𝑆eff in eq. (41) becomes an infinite-dimensional matrix. Practically,
we cannot calculate an infinite number of expectation values, and we need to introduce a truncation.
By choosing a finite basis {𝑊 𝑗′}, where now 𝑗 ′ only runs a finite range, we approximate the action
as

𝑆eff ≈
∑︁
𝑗′

′
𝛽′𝑗′𝑊 𝑗′ ≡ 𝑆′eff . (44)

The prime symbols indicate the truncation. It then turns out that 𝛽′
𝑗

determined by the finite-
dimensional counterpart of eq. (41):∑︁

𝑗′

′
𝛽′𝑗′ ⟨𝜕𝐴𝑊 𝑗′𝜕

𝐴𝑊𝑖′⟩𝑆eff = ⟨(𝜕𝐴)2𝑊𝑖′⟩𝑆eff , (45)

gives the best approximation of 𝑆eff in the sense that they minimize the norm ∥𝑆eff − 𝑆′eff ∥𝑆eff , where
∥ · ∥𝑆eff is the force norm:

∥𝑆∥2
𝑆eff

≡ ⟨(𝜕𝐴𝑆)2⟩𝑆eff . (46)

In fact, by subtracting eqs. (41) and (45) for the range of the index 𝑖′:∑︁
𝑗′

′
(𝛽 𝑗′ − 𝛽′𝑗′)⟨𝜕𝐴𝑊 𝑗′𝜕

𝐴𝑊𝑖′⟩𝑆eff = 0. (47)

This is equivalent to the stationary condition:

0 =
𝜕

𝜕𝛽′
𝑖′
∥𝑆eff − 𝑆′eff ∥

2
eff

=
𝜕

𝜕𝛽′
𝑖′
⟨[𝜕𝐴(𝑆eff − 𝑆′eff)]

2⟩eff

= −2
∑︁
𝑗′

′
(𝛽 𝑗′ − 𝛽′𝑗′)⟨𝜕𝐴𝑊 𝑗′𝜕

𝐴𝑊𝑖′⟩𝑆eff . (48)

Since the norm (46) is bounded from below but not from above, we can generically expect the
stationary point to be the minimum. Therefore, this Schwinger-Dyson method gives us a systematic
way to project effective actions onto a subspace of actions, where we can measure its goodness
from the force fields in numerical calculations.
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3.2 Designing the kernel with the Schwinger-Dyson equation

We now apply the Schwinger-Dyson equation in the determination of the approximate trivial-
izing map. The idea is to reduce the action with 𝑡 as in eq. (26), replacing the effective action with
the approximate one, eq. (44), so that we can work completely in the functional space spanned by
the finite basis. Below, we write down equations in this finite basis, and we drop the prime symbols
on 𝑗 for notational simplicity. We write as S the subspace spanned by the chosen finite set {𝑊 𝑗} of
Wilson loops and their products.

For the effective action 𝑆eff,𝑡 at a given time 𝑡, we apply the Schwinger-Dyson method to
approximate it in S:

𝑆eff,𝑡 ≈ 𝑆′eff,𝑡 =
∑︁
𝑗

′
𝛽′𝑗 ,𝑡𝑊 𝑗 . (49)

Here the effective couplings 𝛽 𝑗 ,𝑡 are determined by the linear equation:〈
− (𝜕𝐴)2𝑊𝑖 +

∑︁
𝑗

′
𝛽′𝑗 ,𝑡𝜕

𝐴𝑊 𝑗𝜕
𝐴𝑊𝑖

〉
𝑆eff,𝑡

= 0, (50)

corresponding to eq. (45). We again consider the infinitesimal map of the form:

F𝑡 , 𝜖 (𝑉)𝑥,` = 𝑒−𝜖 𝑇𝑎𝜕𝑎
𝑥,` �̃�𝑡 (𝑉 )𝑉𝑥,`, (51)

where this time we construct 𝑆𝑡 in the truncated space S:

𝑆𝑡 =
∑︁
𝑘

′
𝛾𝑘,𝑡𝑊𝑘 . (52)

By taking 𝑑/𝑑𝑡 in eq. (50), we obtain the linear equation:∑︁
𝑘

′
𝛾𝑘,𝑡

〈
𝜕𝐵𝑊𝑘𝜕

𝐵
[
− (𝜕𝐴)2𝑊𝑖 +

∑︁
𝑗

′
𝛽′𝑗 ,𝑡𝜕

𝐴𝑊 𝑗𝜕
𝐴𝑊𝑖

]〉
𝑆eff,𝑡

= −
∑︁
𝑗

′ ¤𝛽′𝑗 ,𝑡
〈
𝜕𝐴𝑊 𝑗𝜕

𝐴𝑊𝑖

〉
𝑆eff,𝑡

. (53)

The left hand side comes from the 𝑡-dependence of the Boltzmann weight, and the right hand side
from the explicit 𝑡-dependence of 𝛽′

𝑗 ,𝑡
. Equation (53) gives us the coefficients 𝛾𝑘,𝑡 for a given ¤𝛽′

𝑗 ,𝑡
,

i.e., for a given trajectory of 𝑆′eff,𝑡 in S. We here choose ¤𝛽′
𝑗 ,𝑡

to be:

¤𝛽′𝑗 ,𝑡 = −
𝛽′
𝑗 ,𝑡

1 − 𝑡
, (54)

so that 𝛽′
𝑗 ,𝑡

= (1 − 𝑡)𝛽′
𝑗 ,𝑡=0 = 𝛽 𝑗 ,𝑡=0.2 After obtaining the coefficients 𝛾𝑘,𝑡 , and thus the map (51)

at each time step 𝑡 = 𝑘𝜖 , (𝑘 = 0, · · · , 𝑛 − 1), we compose them in the ordering:

F𝑡 ≡ F0, 𝜖 ◦ · · · ◦ F(𝑛−1) 𝜖 , 𝜖 , (55)

2Another choice of ¤𝛽′
𝑗 ,𝑡

leading to the same functional form of 𝛽 𝑗 ,𝑡 is ¤𝛽′
𝑗 ,𝑡

= −𝛽 𝑗 ,𝑡=0. The difference between the
two appears in practical calculation where we have inexactness due to 𝑂 (𝜖2) terms and the statistical error. We choose
the form (54) as it can take into account of these effects from the observed 𝛽′

𝑗 ,𝑡
. It is, however, uncertain if this is the

optimal choice though the difference is small compared to the truncation effect in choosing S.

10
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One of the advantages of designing the trivializing map with the Schwinger-Dyson equation is
that the basis for the flow kernel can be chosen arbitrarily by hand. Furthermore, it can be applied
to the general action of interest, and the coefficients in the kernel, 𝛾 𝑗 ,𝑡 , are determined by the lattice
estimates of the observables. In this sense, it contains the non-perturbative information of the theory
and there is no need to make analytic calculations beforehand. Note also that the truncation effects
and goodness of the map can be measured by the force norm (46).

There is a practical note in the choice of S. Since there are linear relations among Wilson
loops and their products called Mandelstam constraints [37] (see also [38–40]), we need to choose
the basis functions carefully so that the inversions (45) and (53) are possible. The simplest and
relevant example is (see Fig 4 for a graphical representation):

𝑊6 = 𝑊5 + 2𝑊0. (56)

This relation follows from a simple 𝑆𝑈 (3) identity: For 𝑈 ∈ SU(3),

! "#

Figure 4: Simplest Mandelstam constraint.

(tr𝑈)2 = tr(𝑈2) + 2tr𝑈†. (57)

Further relation can be obtained by the Cayley–Hamilton equation:

𝑈3 = (tr𝑈)𝑈2 − 1
2
[
(tr𝑈)2 − tr(𝑈2)

]
𝑈 + 1. (58)

4. Results

In this section, we show the evolution of the effective action and autocorrelation times for the
Schwinger-Dyson method. We use the HMC algorithm with the exact transformed action, whose
detail was given by Lüscher in [7]. At each step of the approximate trivializing map, we have
the inversion, eq. (53), for which we use the numerical derivative with the five-point formula to
calculate the matrix from the flows with 𝜖 = 0.0004.

4.1 Evolution of the effective action

To compare the effective actions determined by the Schwinger-Dyson method to those by the
𝑡-expansion, we use the Wilson action. We use 84 lattice with 𝛽 = 6.13, which corresponds to
𝑎−1 = 2.56GeV [41]. In figure 5, we show one of the determined coefficients, 𝛾0,𝑡 , which is the
coefficient of 𝑊0. We take the step size 𝜖 = 0.1 and consider 𝑡 = 0.1, · · · , 0.4. We see from the
figure that the coefficients 𝛾 𝑗 ,𝑡 determined by the Schwinger-Dyson method differ significantly from
the 𝑡-expansion. It is also notable that 𝛾 𝑗 ,𝑡 largely depends on the choice of S. In figure 6, we plot
the norm (46) between 𝑆eff,𝑡 and the target action (1 − 𝑡)𝑆 at each time 𝑡. We see that, with the
Schwinger-Dyson method, we can have better control of the effective action. Note that, the norm

11
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Figure 5: Comparison of 𝛾0,𝑡 from the 𝑡-expansion method in the leading order (LO) and the next-to-leading
order (NLO) to the Schwinger-Dyson (SD) method with various choices of S.

Figure 6: The difference between the effective action 𝑆eff,𝑡 and the target action (1 − 𝑡)𝑆.

monotonically decreases when we enlarge the truncated space S though the gain is small compared
to the deviation from the exact trivializing trajectory. We lastly comment that, as shown in figure 6,
naively adding the rectangle term in the lowest order 𝑡-expansion formula (orange dash-dotted line)
does not improve the map, but rather makes it worse; we need to add all the terms in the next order
expansion to improve the map in the 𝑡-expansion method.

4.2 Autocorrelation

To study autocorrelation and the efficiency of the algorithm, we switch to the DBW2 action
[42]. We take 83 × 16 lattice with 𝛽 = 0.89, which corresponds to 𝑎−1 = 1.49GeV [43]. In figure 7,
we plot the difference from the target action, which is the counterpart of figure 6 in the DBW2 case.
We choose the step size to be 𝜖 = 0.2 and take 𝑡 = 0, 0.2, · · · , 1.0. We see that, also for the DBW2
action, we have better control of the map by enlarging the space S.

In figure 8, we show the history of the smeared energy density and the normalized autocorre-
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Figure 7: The difference between 𝑆eff,𝑡 and the target (1 − 𝑡)𝑆 for the DBW2 case.

lation function 𝜌𝑛 calculated from the data:

𝜌(𝑛) ≡ 𝐶 (𝑛)/𝐶 (0), 𝐶 (𝑛) ≡ ⟨(𝐸𝑚 − ⟨𝐸𝑚⟩)(𝐸𝑚+𝑛 − ⟨𝐸𝑚+𝑛⟩)⟩. (59)

The smearing is performed with the Wilson flow with the flow time 𝑡𝑤 = 30𝑡0, where 𝑡0 is the time
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Figure 8: Autocorrelation of the smeared energy density with the Wilson flow time 𝑡𝑤 = 30𝑡0. (Left)
History of the observable generated by the ordinary (not field-transformed) HMC. (Right) The normalized
autocorrelation function 𝜌(𝑛) with and without applying the approximated trivializing map determined by
the Schwinger-Dyson method.

scale at which [44]

𝑡2𝑤 ⟨𝐸⟩ = 0.3. (60)

After the smearing time 𝑡𝑤 = 30𝑡0, the smeared energy density reflects the instantons (see the left
panel of figure 8). The right panel of figure 8 shows that the configurations decorrelate faster (in
Monte Carlo steps) by including the extended loops.

However, looking at the observable at the other scales, we notice that the autocorrelation is not
controlled completely though we still observe the tendency of improvement by the extended loops.
In figure 9, we show the autocorrelation of the energy densities at smearing times 𝑡𝑤 = 𝑡0, 10𝑡0, 30𝑡0.
As we can see from, e.g., the 𝑡 = 0.6, 𝑡𝑤 = 10𝑡0 case, adding more Wilson loops in 𝑆𝑡 does not
always reduce the autocorrelation.
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Figure 9: The autocorrelation function with various flow time scales

4.3 Algorithmic overhead

At this point, we also mention that the algorithmic overhead is not negligible when adding the
extended Wilson loops. Figure 10 shows the computational cost for generating a single configuration
with one-step flows with various choices of S.3 We see that the cost increases quite rapidly by
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Figure 10: Computation time to generate configuration.

adding extended Wilson loops. The increase can be understood by the cost of calculating the hessian
𝜕𝐴𝜕𝐵𝑆𝑡 , which is used in the calculation of the Jacobian F𝑡 ,∗. Figure 11 pictorially shows the cost

3This is a one-node calculation fully parallelized with MPI and OpenMP.
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difference of calculating 𝜕𝐴𝜕𝐵𝑊 for 𝑊 = 𝑊0 (plaquette) and 𝑊 = 𝑊1 (rectangle). Here note that,

plaquette
rectangle
(short edge)

!"#$% & %'(

factor difference

(long edge)

Figure 11: Numerical cost of calculating the Hessian 𝜕𝐴𝜕𝐵𝑆𝑡 for plaquette and rectangle.

since acting derivatives inserts the generator 𝑇𝑎, each pattern of acting the derivatives requires
evaluation of Wilson loops with different insertions. By counting the number of ways to choose the
links on which 𝜕𝐴 and 𝜕𝐵 act, we have a multiplicative factor of 4.5 in the cost for 𝑊1 compared
to 𝑊0, which mostly agrees with the cost increase shown in figure 10. We also note that, in the
above calculations, the flow is arranged to make the Jacobian calculation run in parallel for each
link. Though for the extended shapes we need complicated schemes, it can be done by dividing the
directions of the flowed links and by appropriately coloring the lattice for each type of loops [7, 45].
Figure 12 shows the examples of the coloring schemes.

plaquette
rectangle
(short edge)

(long edge)

Figure 12: Coloring schemes.

5. Discussion

In this work, we proposed a way to design an approximate trivializing map using a Schwinger-
Dyson equation. The algorithmic advantages of this method are that: (1) The basis for the flow
kernel can be chosen arbitrarily by hand. (2) It can be applied to the general action of interest.
(3) The coefficients in the kernel are determined by lattice estimates of the observables, which
does not require analytic calculations such as those in the 𝑡-expansion. It is also notable that the
truncation effects and goodness of the flow can be measured by the force norm. We showed that
with the Schwinger-Dyson method, we can have better control of the effective action, and observed
a tendency to decrease the autocorrelation of long-range observables by adding extended Wilson
loops. However, the decorrelation is not sufficient compared to the induced overhead. This indicates
that, though the effective action is getting closer to the target action, the large-size Wilson loops
that are neglected in the construction still leave significant contributions.

Indeed, to obtain the exact trivializing map, in which case we can decrease the autocorrelation of
all the modes of the system, we need an infinite number of Wilson loops as reviewed in section 2.1.
However, adding more and more Wilson loop basis is not realistic because of the increasing
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algorithmic overhead shown in subsection 4.3. Since it is likely that we need to restrict ourselves
to a few small Wilson loops, one possible strategy may be to be more specific to a particular slow
observable, e.g., the topological charge. For example, as is well known, the instanton potential with
respect to its radius can be different for the same lattice spacing but with different gauge action. We
thus may be able to change the instanton potential to stimulate tunneling with the small number of
basis functions in S (cf. [46–49]). Studies along these lines are in progress and will be reported
elsewhere.
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