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1. Introduction

Graphene is the only known material consisting of a single atomic layer [1]. Carbon atoms
form a honeycomb lattice consisting out of two triangular Bravais sublattices with each site’s nearest
neighbours belonging to the opposite sublattice as shown in fig. 1. This means that the lattice can be
coloured using two alternating colours. Graphene and derived carbon nanostructures like nanotubes
and fullerenes have unique electromagnetic properties [2].

Figure 1: Honeycomb lattice of graphene. The red and the blue points form the two triangular sublattices
respectively.

In order investigate these properties theoretically, we employ the Hubbard model which de-
scribes electronic interactions in a simple way. It is assumed that the carbon atoms composing
graphene have fixed lattice positions and moreover not more than two electrons per site are allowed
to move and thus contribute to the electromagnetic properties of the material. These electrons are
confined to the lattice points at any given time, but they can instantly hop from one lattice point to a
nearest neighbour. Hence, exactly zero, one or two electrons (of opposite spin) can be at the same
lattice point simultaneously. In addition, an on-site interaction * models the repulsive force of the
identically charged particles and a chemical potential ` governs the total electron number.

We use a particle-hole basis [3], that is we count the present spin-up particles and the absent
spin-down particles, therefore our Hamiltonian reads

� = −^
∑
〈G,H〉

(
?†G ?H + ℎ†GℎH

)
+ *

2

∑
G

dGdG + `
∑
G

dG , dG = ?
†
G ?G − ℎ†GℎG , (1)

where 〈G, H〉 denotes nearest neighbour tuples, ? and ℎ are fermionic particle and hole annihilation
operators, ^ is the hopping amplitude and dG is the charge operator.

There are special cases in which the Hubbard model on the honeycomb lattice can be solved
exactly. For instance the tight binding limit with * = 0 has an analytic solution that features two
energy bands touching at the so called Dirac points with a linear (relativistic) dispersion relation
as depicted on the left in fig. 2. Furthermore the density of states goes to zero at exactly this
point. These two properties define a semimetal and they are in surprisingly good agreement with
experimental measurements of graphene which is found to be a good electric conductor. In contrast
to the hopping strength ^ ≈ 2.7 eV well determined experimentally for graphene, the coupling *
is not known from experiment. Moreover the general Hubbard model with * ≠ 0 has neither
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Figure 2: Left: The two energy bands (in multiples of the hopping ^) of the non-interacting Hubbard model
as a function of the momentum : normalised by the lattice spacing 0. Center: Inset showing the Dirac cones.
A band gap Δ separating the bands opens in the phase transition, once a critical coupling *2 is surpassed.
The bottom figure is only a qualitative visualisation, not the exact result. Right: The sublattice symmetry is
broken at the same critical coupling and the disordered state (a superposition of all possibilities) transitions
to an antiferromagnetic order.

analytic nor perturbative solutions and exact numerical solutions become unfeasible for physically
interesting numbers of lattice sites because the dimension of the Fock space grows exponentially
with the lattice size. This necessitates approximate solutions like the stochastic and tensor network
algorithms we introduce below.

By now it is well known that the Hubbard model on the honeycomb lattice undergoes a zero-
temperature quantum phase transition at some critical coupling*2 [4, 5]. For* < *2 the system is
in a conducting semi-metallic state, while above this critical coupling a band gap opens (visualised
in the central column of fig. 2), so it becomes a Mott insulator. Experimentally, the value of * in
graphene can be confined to the region * < *2 without Mott gap [6], the value of *2 however
cannot be measured. *2 therefore has to be determined by theoretical or numerical investigations
of the Hubbard model as we do in this work.

It has also been established for some time that an antiferromagnetic (AFM) order is formed in
the insulating state (see fig. 2, right) and we could recently show [7] that both, insulating and AFM,
transitions happen simultaneously.

The rest of this proceeding is structured as follows. In Section 2 we explain how the Hybrid
Monte-Carlo (HMC) algorithm allowed us to simulate unprecedentedly large honeycomb lattices
at half filling (` = 0) and to analyse the quantum phase transition to a high precision. The most
important physical results are summarised as well. Next, in Section 3, we introduce the sign
problem that occurs away from half filling (` ≠ 0) and we show how it can be overcome with the
use of Tensor Networks (TN), but we also address the limitations this approach has so far. Finally,
a comparison of the two approaches is provided in Section 4. Advantages and disadvantages of
HMC and TN algorithms respectively are discussed.
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2. Hybrid Monte Carlo

Numerous approaches have been utilised to solve the Hubbard model. The majority of al-
gorithms dealing with the Hubbard model at half filling (or at small chemical potential) belong to
the class of quantum Monte Carlo (QMC) simulations. Stochastic simulations arise naturally from
the probabilistic nature of quantum mechanics and they have proven to be very successful.

In this work we use the HMC algorithm, a Markov-chain Monte Carlo (MCMC) method with
global updates on continuous fields. A simple pedagogical introduction to the HMC algorithm can
be found in [8]. Brower, Rebbi and Schaich (BRS) originally proposed to use the HMC algorithm
for simulations of graphene [9]. Their formalism stands in stark contrast to the widespread local
Blankenbecler-Sugar-Scalapino (BSS) [10] algorithm. The main advantage of the HMC over local
update schemes like the BSS algorithm is its superior scaling with volume O

(
+5/4) whereas most

alternative schemes scale as volume cubed O
(
+3) . In practice BSS usually outperforms BRS on

small systems where it is less noisy, but the HMC (i.e. BRS) gains the upper hand on large lattices
which are essential for approaching the thermodynamic limit. In addition, the HMC has been
heavily optimised, in particular in lattice quantum chromodynamics (QCD), and we utilised many
of these improvements for our condensed matter simulations [11].

By the time this work started, HMC simulations of the Hubbard model had been well estab-
lished [3, 12–14]. The algorithmic details at half filling including our optimisation methods are to
be found in [11]. In short, we formulate the problem on a lattice in 2+1 Euclidean dimensions at
finite inverse temperature V and perform a Hubbard-Stratonovich transformation in order to obtain
the effective Hamiltonian

H =
X

2*
q2 + j†

(
""†

)−1
j + 1

2
c2 (2)

Here c is the real momentum field, q the real Hubbard field, j a complex pseudofermionic vector
field, X = V/#C is the time step size, and " is the fermion operator with

"��
(G,C) (H,C′) = XGH

(
XC+1,C′ − XCC′ei XqG,C

)
"��
(G,C) (H,C′) = XGH

(
XCC′ − XC−1,C′e− i XqG,C

)
"��
(G,C) (H,C′) = "

��
(G,C) (H,C′) = −X^X 〈G,H〉XC ,C′ .

(3)

The HMC algorithm now generates c and an auxiliary complex field d according to a gaussian
distribution e−c2/2 respectively e−d†d. Then the pseudofermionic field is obtained as j = "d. With
this starting parameters and an initial field q a molecular dynamics trajectory is calculated and the
result is accepted with the probability min

(
1, e−ΔH

)
. ΔH is the difference in energy resulting from

the molecular dynamics. This procedure guarantees sampling according to the probability density
? [q] ∝ det

(
""†

)
e− X

2* q
2 .

Our optimised methods allowed for the largest lattices simulated to date (20,808 lattice sites)
enabling us to perform the first thorough analysis and elimination of all finite size and discretisation
effects. The data analysis, in particular a high number of plateau fits [15], has been performed
using the hadron package [16] in R [17]. We calculated the single particle gap Δ and the staggered
magnetisation <B as order parameters of the conductor-insulator [18] and the AFM [7] transitions
respectively. In both cases a data collapse onto a universal function allowed to extract the critical
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Figure 3: All quantities in units of ^ and after the thermodynamic and continuum limit extrapolations. V
is the inverse temperature. The single-particle gap Δ(*, V) (left) and the AFMI order parameter (staggered
magnetization) <B (right). We also show Δ(*, V = ∞) and <B (*, V = ∞) as solid black lines with error
band. The legend from the left plot applies to both.

coupling *2/^ = 3.84(1) as well as the critical exponents a = 1.18(4), β = 0.90(4), and [q =
0.52(1).

Figure 3 shows the order parameters. In the zero-temperature limit they obtain non-zero values
at precisely the same critical coupling*2 . Hence in total we observe a semimetal-antiferromagnetic
Mott insulator (SM-AFMI) transition which falls into the Gross-Neveu-Heisenberg universality
class. Up to date summaries of the critical parameters can be found in [19, 20].

3. Fermionic Projected Entangled Pair States

Away from half filling, i.e. at non-zero chemical potential `, the so-called fermion sign problem
emerges. It manifests itself in a ‘probability density’

? [q] ∝ det
(
" [q, `]" [q,−`]†

)
(4)

that is no longer positive semi-definite. Thus,Monte-Carlo simulations cannot be performedwithout
additional considerations.

Themost straight-forward approach to restore stochastic tractability is the reweighting technique
where the complex phase ei \ of the weight ? [q] is treated as part of the observable. That is, the
HMC simulation proceeds as usual, but with the probability density |? [q] |, and the expectation
value of an observable $ is obtained via

〈$〉? =

〈
$ei \ 〉

|? |〈
ei \

〉
|? |

. (5)

This method, however, quickly becomes very unstable when the statistical power
〈
ei \ 〉

|? | is small.
There is a large variety of alternative algorithms avoiding or alleviating the sign problem.

They include, but are by no means restricted to, simulations close to the Lefschetz thimbles using
holomorphic flow or machine learning [21–23] and density of states methods [24, 25].
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In the rest of this section we will focus on Tensor Network (TN) simulations that do not have
a sign problem at all because they do not rely on probability sampling. More precisely, we use
fermionic Projected Entangled Pair States (PEPS) [26, 27] closely following Ref. [28].

3.1 Formalism

In order to get an intuition for the TN approach, it is most instructive to start in 3 = 1 dimension
with so-called matrix product states (MPS). They can be derived using successive singular value
decompositions (SVD) on a mixed quantum state

|k〉 =
∑
B1

∑
B2

· · ·
∑
B#

�B1,B2,...,B# |B1〉 ⊗ |B2〉 ⊗ · · · ⊗ |B# 〉 (6)

=
∑
B1

∑
B2

· · ·
∑
B#

�1
B1;U1�

2
B2;U1,U2 · · · �

#
B# ;U#−1 |B1〉 ⊗ |B2〉 ⊗ · · · ⊗ |B# 〉 (7)

composed from local finite-dimensional degrees of freedom |B8〉. Now the number of parameters
in the rank-# tensor �B1,B2,...,B# grows exponential in # . The constituent tensors �B8 ;U8−1,U8 on the
other hand can be truncated to some bond dimension � so that relation (7) is not exact any more,
but the number of parameters grows merely linearly in # . In practice moderate bond dimensions
(i.e. those tractable on a computer) often lead to good approximations.

4/4

�

B

U8

U 9

U:

Figure 4: State of a PEPS for a 3x4 fermionic honeycomb lattice (left) and single tensor representation
(right). Description of symbology (see text for more details) – circles: PEPS tensors; dashed lines: physical
indices; solid lines: internal indices; dotted line: parity index; diamonds: swap gates.

The generalisation to more than one spatial dimension is straight forward in this formalism.
In 3 = 2 dimensions the object thus obtained is a PEPS and it can be visualised as in figure 4.
We remark at this point that even though this is not challenging mathematically, higher dimensions
fundamentally increase computational complexity. The crucial difference is that in 3 > 1 some
tensors have 3 or more internal links and the contractions of two such objects results in a tensor
of even higher rank (see fig. 5). Therefore additional truncations are required when contracting
a PEPS. Here we use the boundary MPS approach where the PEPS is contracted line by line and
the links between the tensors on the boundary line are truncated to the dimension j. In literature
usually j ' �2 is chosen, however we find that j ≤ 3� is enough in most cases leading to a
significant speed up.

Another challenge is presented by the fermionic anti-commutation relations. They translate to
non-trivial behaviour whenever lines (or links) of the PEPS cross. We incorporate the property that
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=

=

3 = 1

3 > 1

Figure 5: Visualisation of two tensor contractions in one and two spatial dimensions respectively. In 1D the
contraction leads to a self-similar object (matrix-matrix multiplication yielding amatrix) whereas dimensions
larger than one the contraction results in a tensor of higher rank than each of its constituents (contracting two
rank-3 tensors yielding a rank-4 tensor).

any even number of fermions commutes with any number while two odd numbers anti-commute by
introducing even- and odd- parity sectors and the swap gate

even︷   ︸︸   ︷ odd︷        ︸︸        ︷

( =

©«

1 . . . 1 1 . . . 1
...
. . .

...
...
. . .

...

1 . . . 1 1 . . . 1
1 . . . 1 −1 . . . −1
...
. . .

...
...
. . .

...

1 . . . 1 −1 . . . −1

ª®®®®®®®®®®¬

 even

 odd

that has to be inserted at every crossing of two links (diamonds in fig. 4). The overall parity of the
system is a conserved quantity and can be fixed by an external parity link as shown in the bottom
left corner of figure 4.

3.2 Imaginary time evolution

In contrast to the canonical approach chosen for the HMC algorithm in Section 2, we do not
simulate PEPS at finite temperature. Instead we perform a ground state search for which the TN
ansatz is much better suited. To this end we evolve a random initial state in a given parity sector in
imaginary time until convergence is reached. The time steps are decreased simultaneously, so that
time discretisation artifacts can be eliminated completely.

Details on the time step reduction scheme are provided in Section III.B of Ref. [28]. Crucially,
we can monitor the rate of convergence by means of the cheap energy estimator

� ≈ − 1
XC

ln

√
〈Ψ′ |Ψ′〉
〈Ψ |Ψ〉 , (8)

where |Ψ〉 is the state before and |Ψ′〉 the state after a single imaginary time evolution step of
length XC. The change of the norm here can simply be calculated as the product of norm changes of
all the individual local tensors, thus no full contraction of the network is needed.
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We use the Simple Update (SU) scheme for the imaginary time evolution that has the same
advantage of not requiring a full TN contraction [29]. It consists of local updates applying so-called
gates, i.e. Trotter-decomposed components of the time evolution operator, to each pair of sites
successively. Such a SU step is visualised in the left panel of figure 6. Only a single contraction
of the complete TN with boundary MPS is required at the end of the time evolution to obtain
expectation values for observables. Since full contractions scale at least as O(�7) with the bond
dimension while SU only scales as O(�4), the runtime is mostly governed by the single contraction
at the end of the simulation and the algorithm is by several orders of magnitude faster than the
alternative Full Update.

exp(−g�8)
truncate

−5

−4

−3

−2

−1

0

0 10 20 30 40 50 60

�

C

exact evolution
direct estimator

bMPS

Figure 6: Left: Singe step of the Simple Update algorithm, a gate is applied locally and the result is
truncated. Right: Imaginary time evolution with ^ = 1, * = 4, ` = � = 0.1 on the 2 × 4-lattice with � = 8
and odd parity. Energies calculated using boundary MPS (bMPS) and the direct estimator from eq. (8). As
a reference we provide the exact imaginary time evolution of the state vector obtained via full contraction of
the initial PEPS.

A typical convergence plot with appropriately tuned parameters is shown on the right of figure 6.
For this small system size a comparison with the exact evolution of the full state is possible and
we find good agreement between the exact results and the true boundary MPS estimator. Both
converge to the correct ground state energy simultaneously approaching the infinite and continuous
time limits. The direct estimator from equation (8) is inaccurate, but it captures the convergence
behaviour qualitatively.

3.3 Results

Having explained the TN formalism, we have to test its usefulness in a case where the HMC
algorithm fails. We therefore simulated the 3 × 4 honeycomb lattice (the largest lattice we could
solve with exact diagonalisation for benchmarking) at finite chemical potential where the HMC
suffers from a very severe sign problem. The results can be found in figure 7 for the ground states
of both parity sectors and the modulus of their difference, i.e. the single particle gap. They do
not only converge well with the bond dimension �, the simulations also proved significantly less
compute intensive than the exact diagonalisation. The only regions of bad convergence are close to
the cross overs from one ground state to another (kinks in the solid lines) because the ground states
are ambiguous in these regions.
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Figure 7: Energies of the 3 × 4 hexagonal lattice with ^ = 1, * = 2 and � = 0 at different values of `.
Duplicate points correspond to j = 2� and j = 3�. Left: Even parity; center: Odd parity; right: Energy
gap between even and odd parity sectors.

Figure 8 demonstrates that the TN method scales to lattice sizes far beyond exact diagonalis-
ability. On the left we show the non-interacting case of the 30 × 15 honeycomb lattice away from
half filling. The results obtained from the PEPS ground state search converge with ∼ �−2 towards
the correct value. The right hand side plot of figure 8 shows the first prediction for an interacting
lattice of this size away from half filling. We chose */^ = 2, `/^ = 0.5 and obtained the even and
odd ground state energies �even = −483.5(14) and �odd = −483.8(12) respectively.
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Figure 8: Energies with finite chemical potential (^ = 1, ` = 0.5, � = 0) for the 30 × 15-lattice against the
inverse squared bond dimension. Duplicate points correspond to j = 2� and j = 3�. Left: non-interacting,
i.e.* = 0; right: * = 2.

Let us finally remark that our TN simulations did not violate the no-free-lunch theorem yet.
The first reason is that the ground state energy is an extensive quantity. This means that even
though we can reliably estimate it from PEPS ground state search with affordable computational
effort and acceptable relative precision, it is unfeasible to keep the absolute error at a constant
level with growing system size. Therefore intensive quantities like the single particle energy gap
cannot be resolved for large systems. Usually intensive observables carry most interesting physical
information and it is a challenge to extract as much physical insight as possible from the available
extensive observables.

Moreover so far we only showed parameter regions with well behaved convergence. We find,
however, that stable convergence is not guaranteed in the case of a large gap between the ground
state of the excited parity sector (usually odd parity) and the true ground state. An extreme case is
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presented on the left hand side of figure 9 where the correct ground state of the odd parity sector
is approached at first, but then numerical instabilities enforce a jump into the forbidden even parity
sector with its lower lying ground state. This implies that only the results of a global ground state
search can be fully trusted while results in a particular parity sector might be deceptive.
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Figure 9: Left: Energy during the imaginary time evolution with* = 1 and ^ = ` = � = 0 on the 3×4-lattice
with odd parity. The energies have been calculated using boundary MPS (bMPS) for Simple Update. Right:
Standard deviation of the norm Δ� and deviations of the magnetization " and the particle number = from
the exact value (see Ref. [28] for more details). 3 × 4 hexagonal lattice with ^ = 1, * = 3 and ` = � = 0 for
different bond dimensions � using j = 3�.

It is important to note that these simulations fail ‘gracefully’ in the sense that a failure can
be clearly identified even if the correct result is unknown. For instance the norm of a state can
be calculated in our framework, but of course the state should be normalised to start with. Large
standard deviations of the norm Δ� therefore indicate numerical errors. We plot several observables
of this type in the right panel of figure 9 and the region where the simulations fail (odd parity,
� ≥ 12) is clearly visible.

4. Conclusion

In this proceeding we have presented two fundamentally different algorithms for the simulation
of quantum mechanical systems applied to the Hubbard model on the honeycomb lattice. On the
one hand the Hybrid Monte Carlo (HMC) algorithm has been explained in Section 2 together
with a summary of the quantum phase transition we could extract relying on data from HMC
simulations. The HMC algorithm has been well established in the lattice field theory community
for more than three decades by now and can be considered the default approach, the ‘work horse’.
Fermionic Projected Entangled Pair States (PEPS) on the other hand are a rather young variety of
Tensor Networks (TN) and not even in their teens yet. In Section 3 we recalled the current state of
fermionic PEPS ground state search simulations. Let us now provide a more detailed analysis of
the respective advantages and disadvantages of the two computational methods.

As to date the HMC algorithm is applicable to very large systems with O(104) spatial lattice
sites while fermionic PEPS do not exceed O(103) sites. Moreover fermionic PEPS have to be
formulated with open boundary conditions in order to apply the boundary Matrix Product States

10



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
3
0

Stochastic and Tensor Network simulations of the Hubbard Model Johann Ostmeyer

(MPS) contraction method. For the HMC arbitrary boundary conditions can be chosen, in particular
periodic boundaries guarantee faster convergence towards the thermodynamic limit.

In all these considerations the HMC algorithms is compute and band width bound, whereas
TN are almost entirely limited by sheer memory requirement.

It is also noteworthy that the HMC simulations on a 3 + 1 dimensional space-time lattice have
to be extrapolated to the continuous time limit and are restricted to finite temperature calculations.
Fermionic PEPS on the other hand easily approach the continuum limit by successive step size
reduction and their ground state search produces only zero temperature results.

A very serious disadvantage of the TN method lies in the poorly controlled convergence in the
bond dimension � and the lack of a reliable means to estimate the error of the final results.

Excited state calculations are challenging with both algorithms. While the HMC results require
high precision data and complicated generalised eigenvalue type analyses [15], excited TN states
can be obtained by first finding the ground state and then projecting it out in a next iteration of
the imaginary time evolution. This projection quickly becomes numerically unstable. Fermionic
PEPS allow for one exception since they give access to the even and odd parity ground states
independently. Some care, however, is called for in this case as well because stable convergence is
not guaranteed in systems with a large gap.

Of course, the crucial advantage of the TN approach over stochastic methods like the HMC
lies in the total absence of the fermionic sign problem allowing for simulations of otherwise totally
unreachable regions of the phase space.

All in all the two algorithms are not truly competing. Rather they complement each other
allowing for different types of simulations, the HMC being ideal for large scale computations near
half filling and fermionic PEPS well suited away from half filling.
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