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1. Introduction

Calculating the structure functions from first principals poses several challenges for lattice
QCD practitioners. Traditionally, lattice calculations make use of the operator product (OPE)
expansion. However, it is known that in the OPE approach, contributions of leading-twist operators
are inseparably connected with the contributions from operators of higher twist, due to operator
mixing and renormalisation [1]. In recent years, the focus has been on light-cone parton distribution
functions (PDFs) accessible from the quasi-PDF approach introduced by Ji [2], which enables a
direct investigation of the 𝑥-dependence of parton distributions. A detailed account of the quasi-PDF
and related approaches is given in recent reviews [3, 4] and presented in plenary talks at the lattice
conferences [5, 6], highlighting the immense efforts and the progress of the lattice community. The
operator mixing issue, however, remains a concern [1, 7, 8]. The majority of the investigations are
limited to the leading-twist contributions, with fewer works on twist-3 contributions [9–11].

In this contribution we describe an alternative and complementary approach that is being
pursued by the QCDSF/UKQCD Collaboration, which is to directly calculate the forward Compton
amplitude on the lattice in the space-like region. While the Compton amplitude is a 4-point
correlation function, via an application of the Feynman-Hellmann approach we reduce this problem
to a more straightforward analysis of 2-point functions. By working with the physical amplitude,
the operator mixing and renormalization issues, and the restriction to light-cone operators are
circumvented. Given the Compton amplitude is known sufficiently accurately, we can expect to
estimate the power corrections in structure functions, i.e. quantify the target mass corrections
and estimate the contributions from higher-twist operators, which could be useful for global PDF
analyses. In principle, the 𝑥-dependence of the structure functions can be recovered [12], although
in practice this requires tackling an inverse-problem [13]. Although our focus is the Compton
amplitude in forward kinematics, this approach is applicable to off-forward kinematics enabling an
investigation of the generalised parton distributions [14–16].

We give an overview of the relation between the Compton amplitude and the moments of
structure functions in Section 2, followed by a summary of the application of the Feynman-Hellmann
theorem in Section 3. The technical details follow in Sections 4 and 5. We present some selected
results on the moments of nucleon structure functions and discuss the power corrections in Section 6.

2. The Compton tensor and the moments of structure functions

The starting point is the forward Compton amplitude described by the time ordered product of
electromagnetic currents sandwiched between nucleon states,

𝑇𝜇𝜈 (𝑝, 𝑞) =
∫

𝑑4𝑧 𝑒𝑖𝑞 ·𝑧𝜌𝑠𝑠′
〈
𝑝, 𝑠′

��T {
J𝜇 (𝑧)J𝜈 (0)

}�� 𝑝, 𝑠〉, (1)

where 𝑝 is the momentum and 𝑠 is the spin of the nucleon, 𝑞 is the momentum of the virtual photon,
and 𝜌 is the polarisation density matrix. For parity-conserving processes that involve conserved
currents the Compton tensor is parametrised in terms of four Lorentz-invariant scalar functions, F1,
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F2, G1 and G2 as follows

𝑇𝜇𝜈 (𝑝, 𝑞) = 𝑇{𝜇𝜈 } (𝑝, 𝑞) + 𝑇[𝜇𝜈 ] (𝑝, 𝑞) (2)

𝑇{𝜇𝜈 } (𝑝, 𝑞) =
(
−𝑔𝜇𝜈 +

𝑞𝜇𝑞𝜈

𝑞2

)
F1(𝜔,𝑄2) +

(
𝑝𝜇 − 𝑝 · 𝑞

𝑞2 𝑞𝜇

) (
𝑝𝜈 −

𝑝 · 𝑞
𝑞2 𝑞𝜈

)
F2(𝜔,𝑄2)

𝑝 · 𝑞 (3)

𝑇[𝜇𝜈 ] (𝑝, 𝑞) = 𝑖𝜀𝜇𝜈𝛼𝛽
𝑞𝛼

𝑝 · 𝑞

[
G1(𝜔,𝑄2)𝑠𝛽 + G2(𝜔,𝑄2)

(
𝑠𝛽 − 𝑠 · 𝑞

𝑝 · 𝑞 𝑝𝛽
)]

, (4)

where we have separated the symmetric and antisymmetric parts, and𝑄2 = −𝑞2 and𝜔 = 2(𝑝·𝑞)/𝑄2.
Here, 𝜀0123 = 1, and 𝑠𝜇 is the spin vector of the polarised target satisfying 𝑠2 = −𝑀2 (𝑀 being the
mass of the nucleon) and 𝑠 · 𝑝 = 0.

The Compton structure functions are related to the corresponding ordinary structure functions
via the optical theorem, which states

ImF1,2(𝜔,𝑄2) = 2𝜋𝐹1,2(𝑥, 𝑄2), (5)
ImG1,2(𝜔,𝑄2) = 2𝜋𝑔1,2(𝑥, 𝑄2). (6)

Making use of analyticity, crossing symmetry and the optical theorem, we can write dispersion
relations for F and G and connect them to the inelastic structure functions,

F 1(𝜔,𝑄2) = 2𝜔2
∫ 1

0
𝑑𝑥

2𝑥 𝐹1(𝑥, 𝑄2)
1 − 𝑥2𝜔2 − 𝑖𝜖

, F2(𝜔,𝑄2) = 4𝜔
∫ 1

0
𝑑𝑥

𝐹2(𝑥, 𝑄2)
1 − 𝑥2𝜔2 − 𝑖𝜖

, (7)

G1(𝜔,𝑄2) = 4𝜔
∫ 1

0
𝑑𝑥

𝑔1(𝑥, 𝑄2)
1 − 𝑥2𝜔2 − 𝑖𝜖

, G2(𝜔,𝑄2) = 4𝜔
∫ 1

0
𝑑𝑥

𝑔2(𝑥, 𝑄2)
1 − 𝑥2𝜔2 − 𝑖𝜖

, (8)

where we will use F 𝑖 (𝜔,𝑄2) = F𝑖 (𝜔,𝑄2) − F𝑖 (0, 𝑄2) throughout to denote a once subtracted
function. Additionally, a once-subtracted dispersion relation for the longitudinal structure function
𝐹𝐿 (𝑥) is written as,

F 𝐿 (𝜔,𝑄2) ≡ F𝐿 (𝜔,𝑄2) + F1(0, 𝑄2) =
8𝑀2

𝑁

𝑄2

∫ 1

0
𝑑𝑥𝐹2(𝑥, 𝑄2) + 2𝜔2

∫ 1

0
𝑑𝑥

𝐹𝐿 (𝑥, 𝑄2)
1 − 𝑥2𝜔2 − 𝑖𝜖

, (9)

where,

𝐹𝐿 (𝑥, 𝑄2) =
(
1 +

4𝑀2
𝑁

𝑄2 𝑥2

)
𝐹2(𝑥, 𝑄2) − 2𝑥𝐹1(𝑥, 𝑄2), (10)

with 𝑀𝑁 the mass of the nucleon. Note that a subtraction is necessary, given the high-energy
behaviour of 𝐹1. Although we are only concerned with subtracting it away, understanding the
subtraction function is an interesting subject in itself. Related discussions on the subtraction
function can be found in [17–20]. As 𝑄2 → ∞, Equation (10) reduces to the familiar Callan-Gross
relation, 𝐹𝐿 (𝑥) → 𝐹2(𝑥) − 2𝑥𝐹1(𝑥), which vanishes in the quark-parton model.

Expanding the integrands in Equations (7) to (9) at fixed𝑄2 as a geometric series, the Compton
structure functions can be expressed as infinite sums over the Mellin moments of the inelastic
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structure functions,

F 1(𝜔,𝑄2) =
∞∑︁
𝑛=1

2𝜔2𝑛𝑀
(1)
2𝑛 (𝑄2), with 𝑀

(1)
2𝑛 (𝑄2) = 2

∫ 1

0
𝑑𝑥 𝑥2𝑛−1𝐹1(𝑥, 𝑄2), (11)

F2(𝜔,𝑄2) =
∞∑︁
𝑛=1

4𝜔2𝑛−1𝑀
(2)
2𝑛 (𝑄2), with 𝑀

(2)
2𝑛 (𝑄2) =

∫ 1

0
𝑑𝑥 𝑥2𝑛−2𝐹2(𝑥, 𝑄2), (12)

F 𝐿 (𝜔,𝑄2) =
∞∑︁
𝑛=1

2𝜔2𝑛𝑀
(𝐿)
2𝑛 (𝑄2), with 𝑀

(𝐿)
2𝑛 (𝑄2) =

∫ 1

0
𝑑𝑥 𝑥2𝑛−2𝐹𝐿 (𝑥, 𝑄2), (13)

G1,2(𝜔,𝑄2) =
∞∑︁
𝑛=1

4𝜔2𝑛−1𝑀̃
(1,2)
2𝑛 (𝑄2), with 𝑀̃

(1,2)
2𝑛 (𝑄2) =

∫ 1

0
𝑑𝑥 𝑥2𝑛−2𝑔1,2(𝑥, 𝑄2). (14)

We note that the physical moments 𝑀2𝑛 that appear in Equations (11) to (14) are dominated by their
leading-twist contributions, i.e. the moments of PDFs, at asymptotically large 𝑄2.

Finally, the unpolarised Compton structure functionsF1 andF2 are accessed from the symmetric
part of the Compton tensor via,

F1(𝜔,𝑄2) = 𝑇{33} (𝑝, 𝑞), for 𝜇 = 𝜈 = 3 and 𝑝3 = 𝑞3 = 0, (15)
F2(𝜔,𝑄2)

𝜔
=

𝑄2

2𝐸2
𝑁

[
𝑇{00} (𝑝, 𝑞) + 𝑇{33} (𝑝, 𝑞)

]
, for 𝜇 = 𝜈 = 0 and 𝑝3 = 𝑞3 = 𝑞0 = 0, (16)

and the longitudinal Compton structure function F𝐿 is constructed as,

F𝐿 (𝜔,𝑄2) = −F1(𝜔,𝑄2) + 𝜔

2
F2(𝜔,𝑄2) +

2𝑀2
𝑁

𝑄2
F2(𝜔,𝑄2)

𝜔
. (17)

We discuss how to access G1 and G2 in Section 5.

3. The Feynman-Hellmann technique

An analysis of the Compton amplitude requires the evaluation of lattice 4-point correlation
functions. However, this is not an easy task given the rapid deterioration of the signal for large
time separations and the contamination due to excited states. The application of the Feynman-
Hellmann theorem reduces the problem to a simpler analysis of 2-point correlation functions using
the established techniques of spectroscopy. Our implementation of the second order Feynman-
Hellmann method is presented in detail in [21]. Here, we outline its main aspects.

We modify the fermion action with the following perturbing term,

𝑆(𝜆) = 𝑆 + 𝜆

∫
𝑑3𝑧 cos(q · z) J𝜇 (𝑧), (18)

where 𝜆 is the strength of the coupling between the quarks and the external field, J𝜇 (𝑧) =

𝑍𝑉 𝑞(𝑧)𝛾𝜇𝑞(𝑧) is the renormalised electromagnetic current coupling to the quarks along the 𝜇

direction, q is the external momentum inserted by the current and 𝑍𝑉 is the renormalization con-
stant for the local electromagnetic current. The perturbation is introduced on the valence quarks
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only, hence only quark-line connected contributions are taken into account in this work. For the
perturbation of valence and sea quarks see [22].

The main strategy to derive the relation between the energy shift and the matrix element is
to work out the second-order derivatives of the two-point correlation function with respect to the
external field from two complementary perspectives. A two-point correlation function projected to
definite momentum in the presence of an external field is defined as,

𝐺
(2)
𝜆

(p; 𝑡; 𝚪) ≡
∫

𝑑3𝑥𝑒−𝑖p·x𝚪〈Ω𝜆 |𝜒(x, 𝑡) 𝜒̄(0) |Ω𝜆〉, (19)

where 𝚪 is the spin-parity projection matrix and |Ω𝜆〉 is the vacuum in the presence of the external
field. The asymptotic behaviour of the correlator at large Euclidean time takes the familiar form,

𝐺
(2)
𝜆

(p; 𝑡; 𝚪) ' 𝐴𝜆(p)𝑒−𝐸𝑁𝜆
(p) 𝑡 , (20)

where 𝐸𝑁𝜆
(p) is the energy of the ground state nucleon in the external field and 𝐴𝜆(p) the

corresponding overlap factor. Differentiating the perturbed nucleon correlator (Equation (20)) with
respect to energy, one finds a distinct temporal signature for the second-order energy shift,

𝜕2𝐺
(2)
𝜆

(p; 𝑡)
𝜕𝜆2

����
𝜆=0

=

(
𝜕2𝐴𝜆(p)
𝜕𝜆2 − 𝑡𝐴(p)

𝜕2𝐸𝑁𝜆
(p)

𝜕𝜆2

)
𝑒−𝐸𝑁 (p)𝑡 , (21)

where we have assumed that first-order perturbations of the energy vanish, as ensured by avoiding
Breit-frame kinematics. The derivatives of 𝐴𝜆(p) and 𝐸𝑁𝜆

(p) are assumed to be evaluated at 𝜆 = 0.
The first term corresponds to the shift in the overlap factor and the second order energy shift is
identified in the 𝑡-enhanced (or time-enhanced) term.

By differentiating Equation (19) twice with respect to 𝜆 in the path integral formalism and
evaluated at 𝜆 → 0, we find

𝜕2𝐺
(2)
𝜆

(p; 𝑦)
𝜕𝜆2

�����
𝜆=0

=

∫
𝑑3𝑥 𝑒−𝑖p·x𝚪

[〈
𝜒(x, 𝑡)𝜒(0)

(
𝜕𝑆(𝜆)
𝜕𝜆

)2
〉
+ · · ·

]
, (22)

where ellipsis denote the terms that do not lead to a time-enhanced term. Inserting the explicit form
of the external electromagnetic current (Equation (18)) and following the algebra, we arrive at,

𝜕2𝐺
(2)
𝜆

(p; 𝑡)
𝜕𝜆2

�����
𝜆=0

= 𝑡𝐴(p) 𝑒
−𝐸𝑁 (p)𝑡

2𝐸𝑁 (p)

〈
𝑁 (p)

����∫ 𝑑4𝑧
(
𝑒𝑖𝑞 ·𝑧 + 𝑒−𝑖𝑞 ·𝑧

)
J𝜇 (𝑧)J𝜇 (0)

���� 𝑁 (p)
〉
+ . . . , (23)

where the subleading terms are suppressed by the ellipsis.
Finally, matching the time-enhanced terms of this form with Equation (21), one arrives at the

desired relation between the energy shift and the matrix element describing the Compton amplitude,

𝜕2𝐸𝑁𝜆
(p)

𝜕𝜆2

����
𝜆=0

= −
𝑇𝜇𝜇 (𝑝, 𝑞) + 𝑇𝜇𝜇 (𝑝,−𝑞)

2𝐸𝑁 (p) , (24)

where 𝑇 is the Compton amplitude defined in Equation (1). Equation (24) is the principal relation
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that we use to access the flavour-diagonal, i.e. 𝑢𝑢 and 𝑑𝑑, pieces of the symmetric part (Equation (3))
of the Compton amplitude.

The above derivation can be generalised to mixed currents by including additional perturbing
terms in Equation (18) to study the flavour-mixed, i.e. 𝑢𝑑, piece, and the antisymmetric part
(Equation (4)) of the Compton tensor. On that account, we make the modifications,

𝑆(𝜆) = 𝑆 + 𝜆1

∫
𝑑3𝑧 cos(q · z) J𝜇 (𝑧) + 𝜆2

∫
𝑑3𝑦 cos(q · y) J𝜇 (𝑦), (25)

𝑆(𝜆) = 𝑆 + 𝜆1

∫
𝑑3𝑧 cos(q · z) J𝜇 (𝑧) + 𝜆2

∫
𝑑3𝑦 sin(q · y) J𝜈 (𝑦), (26)

to access the flavour-mixed and flavour-diagonal antisymmetric pieces of the amplitude, respectively.
Consequently, expressions analogous to Equation (24) are,

𝜕2𝐸𝑁𝜆
(p)

𝜕𝜆1𝜕𝜆2

����
𝝀=0

= −
𝑇𝜇𝜇 (𝑝, 𝑞) + 𝑇𝜇𝜇 (𝑝,−𝑞)

2𝐸𝑁 (p) , (27)

𝜕2𝐸𝑁𝜆
(p)

𝜕𝜆1𝜕𝜆2

����
𝝀=0

=
𝑇𝜇𝜈 (𝑝, 𝑞) − 𝑇𝜇𝜈 (𝑝,−𝑞)

2𝐸𝑁 (p) , (28)

corresponding to the modifications in Equations (25) and (26), respectively, where the crossing
relations 𝑇𝜇𝜇 (𝑝, 𝑞) = 𝑇𝜇𝜇 (𝑝,−𝑞) and 𝑇𝜇𝜈 (𝑝, 𝑞) = −𝑇𝜇𝜈 (𝑝,−𝑞) ensure that we have non-vanishing
Feynman-Hellmann relations.

4. Extracting the energy shifts

We can expand the perturbed energy in the limit 𝜆 → 0,

𝐸𝑁𝜆
(p) = 𝐸𝑁 (p) + 𝜆

𝜕𝐸𝑁𝜆
(p)

𝜕𝜆

����
𝜆=0

+ 𝜆2

2!
𝜕2𝐸𝑁𝜆

(p)
𝜕𝜆2

����
𝜆=0

+ O(𝜆3) (29)

= 𝐸𝑁 (p) + Δ𝐸𝑒
𝑁𝜆

(p) + Δ𝐸𝑜
𝑁𝜆

(p), (30)

considering a single current insertion (e.g. Equation (18)), where we have collected the terms even
(𝑒) and odd (𝑜) in 𝜆 to all orders in writing the second line. A similar Taylor expansion of the
perturbed energy can be written for the double current insertion (e.g. Equation (25)),

𝐸𝑁𝜆
(p) = 𝐸𝑁 (p) + Δ𝐸𝑒𝑜

𝑁𝜆
(p) + Δ𝐸𝑜𝑒

𝑁𝜆
(p) + Δ𝐸𝑒𝑒

𝑁𝜆
(p) + Δ𝐸𝑜𝑜

𝑁𝜆
(p), (31)

where the term of interest is,

Δ𝐸𝑜𝑜
𝑁𝜆

(p) = 𝜆1𝜆2
𝜕2𝐸𝑁𝜆

(p)
𝜕𝜆1𝜕𝜆2

����
𝜆=0

+ O(𝜆1𝜆
3
2) + O(𝜆3

1𝜆2), (32)

with respect to Equations (27) and (28).
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We construct the ratios,

R𝑒
𝜆(p; 𝑡;Γ4) ≡

𝐺
(2)
+𝜆 (p; 𝑡;Γ4)𝐺 (2)

−𝜆 (p; 𝑡;Γ4)(
𝐺 (2) (p; 𝑡;Γ4)

)2
𝑡�0−−−→ 𝐴𝜆(p)𝑒−2Δ𝐸𝑒

𝑁𝜆
(p) 𝑡

, (33)

R𝑜𝑜
𝜆 (p; 𝑡; 𝚪) ≡

𝐺
(2)
(+𝜆,+𝜆) (p; 𝑡; 𝚪)𝐺 (2)

(−𝜆,−𝜆) (p; 𝑡; 𝚪)

𝐺
(2)
(+𝜆,−𝜆) (p; 𝑡; 𝚪)𝐺 (2)

(−𝜆,+𝜆) (p; 𝑡; 𝚪)
𝑡�0−−−→ 𝐴𝜆(p)𝑒−4Δ𝐸𝑜𝑜

𝑁𝜆
(p) 𝑡

, (34)

in order to extract the second-order energy shifts, where 𝐴𝜆(p) is the overlap factor, which is
irrelevant for the rest of the discussion. These ratios isolate the energy shifts only at even orders
of 𝜆. Here, 𝐺 (2)

𝜆
and 𝐺

(2)
(𝜆1,𝜆2) are the perturbed two-point functions with |𝜆1 | = |𝜆2 | = |𝜆 |, and

𝐺 (2) is the unperturbed one. The spin-parity projection matrices are defined as Γ4 ≡ (1 + 𝛾4)/2
for an unpolarised positive-parity nucleon, and Γ𝑒̂

+ ≡ Γ4(1 + 𝒆 · 𝜸𝛾5)/2 for a spin-up positive-parity
nucleon polarised along the 𝑒 direction. Equation (33) is used for the flavour-diagonal pieces of the
symmetric part of the Compton amplitude, i.e. F (𝑢𝑢,𝑑𝑑)

(1,2) , while Equation (34) with 𝚪 = Γ4 is used
for the flavour-mixed piece, i.e. F 𝑢𝑑

(1,2) .

5. Separating the G1 and G2

Accessing the polarised Compton structure functions G1 and G2 is more involved. By choosing
the currents along the 𝜇 = 1, and 𝜈 = 2 directions, and adopting the kinematics 𝑞1 = 𝑝1 = 0, we
cancel the symmetric part (Equation (3)) and isolate the spin dependent part of the tensor,

𝑇[12] (𝑝, 𝑞) = 𝑖𝜀1230 𝑞3
𝑝 · 𝑞

[
G1(𝜔,𝑄2)𝑠0 + G2(𝜔,𝑄2)

(
𝑠0 −

𝑠 · 𝑞
𝑝 · 𝑞 𝑝0

)]
, (35)

where we are left with the choices 𝛼 = 3 and 𝛽 = 0 to have a non-vanishing amplitude since
𝑞0 = 0 by construct in the Feynman-Hellmann approach. We rearrange Equation (35) by using the
four-spin vector in a boosted frame,

𝑠𝜇 (p) ≡
(
𝒆 · p
𝑀𝑁

, 𝒆 + 𝒆 · p
𝑀𝑁 (𝐸𝑁 (p) + 𝑀𝑁 )

p
)
, (36)

where 𝒆 = 𝜎𝑀𝑁 𝑛̂, with 𝑛̂ the quantisation axis and 𝜎 = +1 for spin up, along with the substitutions
𝜀0123 = 1, 𝑝0 = 𝐸𝑁 (p), 𝑎 · 𝑞 ≡ 𝑎𝜇𝑞𝜇 = −a · q, and 𝜔 = 2(p · q)/𝑄2, into a more compact form,

𝑇 𝑒̂
[12] (𝑝, 𝑞) = 𝐶1(𝒆, p, q)

G1(𝜔,𝑄2)
𝜔

+ 𝐶2(𝒆, p, q)
G2(𝜔,𝑄2)

𝜔
, (37)

with the coefficients,

𝐶1(𝒆, p, q) = 𝑖
2𝑞3

𝑄2
𝒆.p
𝑀𝑁

, (38)

𝐶2(𝒆, p, q) = 𝑖
2𝑞3

𝑄2

[
𝒆.p
𝑀𝑁

− 𝐸𝑁 (p)
(

𝒆.p
𝑀𝑁 (𝐸𝑁 (p) + 𝑀𝑁 )

+ 𝒆 · q
p · q

)]
. (39)
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Note that we have introduced a superscript 𝑒 in Equation (37) to keep track of the spin polarisations.
Once we extract the energy shifts, Δ𝐸𝑜𝑜

𝑁𝜆
(p), using Equation (34) with 𝚪 = Γ𝑒̂

+ and 𝑒 along the 𝑦̂

and 𝑧 directions, and determine the Compton amplitude using Equation (28), we separate G1 and
G2 by solving the system of linear equations,

T = C g, (40)

where T = [𝑇 𝑦̂

[12] , 𝑇
𝑧̂

[12]]
ᵀ, g = [G1,G2]ᵀ/𝜔, and the coefficient matrix

C =

(
𝐶1( 𝑦̂, p, q) 𝐶2( 𝑦̂, p, q)
𝐶1(𝑧, p, q) 𝐶2(𝑧, p, q)

)
. (41)

6. Selected results and discussion

We first present our results for the unpolarised Compton amplitude. Our simulations are carried
out on QCDSF/UKQCD-generated 2 + 1-flavour gauge configurations. Two ensembles are used
with volumes 𝑉 = [323 × 64, 483 × 96], and couplings 𝛽 = [5.50, 5.65] corresponding to lattice
spacings 𝑎 = [0.074, 0.068] fm, respectively. Quark masses are tuned to the 𝑆𝑈 (3) symmetric
point where the masses of all three quark flavours are set to approximately the physical flavour-
singlet mass, 𝑚 = (2𝑚𝑠 + 𝑚𝑙)/3 [23, 24], yielding 𝑚𝜋 ≈ [470, 420] MeV. Up to O(104) and
O(103) measurements are performed by employing multiple sources on the 323 × 64 and 483 × 96
ensembles, respectively.

We obtain amplitudes for several values of current momentum, 𝑄2, in the range 1.5 . 𝑄2 . 7
GeV2. Multiple 𝜔 values are accessed at each simulated value of q by varying the nucleon
momentum p, which allows for a mapping of the 𝜔 dependence of the Compton structure functions.
For each 𝜔, we extract the energy shifts from the ratios defined in Equations (33) and (34) for
two |𝜆 | values. We determine the fit windows by a covariance-matrix based 𝜒2 analysis where we
choose the ranges that have 𝜒2

𝑑𝑜 𝑓
∼ 1.0. Effective mass plots for the ratios are shown in Figure 1

for some selected cases.
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λ = 0.0125

λ = 0.0250

Figure 1: Effective mass plots of the ratios (Equation (33)) for the amplitudes 𝑇33 (left) and 𝑇00 + 𝑇33
(right). Fit windows, along with the extracted energy shifts with their 1𝜎 uncertainty, are shown by
the shaded bands. We are showing the results obtained on the 483 × 96 ensemble for the 𝑢𝑢 piece, for
(p, q) = ((0, 1, 0), (5, 3, 0))

(
2𝜋
𝐿

)
corresponding to 𝜔 = 0.18 at 𝑄2 ∼ 4.9 GeV2. Figures taken from [25].
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)
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T dd33

T uu00 + T uu33
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Figure 2: 𝜆 dependence of the energy shifts for the 𝑢𝑢 and 𝑑𝑑 pieces of the 𝑇33 and 𝑇00 + 𝑇33 amplitudes.
Results are from the 483 × 96 ensemble with the same kinematics given in Figure 1. Figure taken from [25].

We perform polynomial fits of the form, Δ𝐸𝑁𝜆
(p) = 𝜆2 𝜕2𝐸𝑁𝜆

(p)
𝜕𝜆2

����
𝜆=0

+ O(𝜆4), to determine

the second order energy shift. Equation (32) also reduces to this form since we set |𝜆1 | = |𝜆2 | = |𝜆 |
in our simulations. The unperturbed energy, 𝐸𝑁 , and odd-order lambda terms (O(𝜆), O(𝜆3), . . . )
are removed by construction in the ratios. Given the smallness of our 𝜆 values, higher order O(𝜆4)
terms are heavily suppressed, hence the fit form reduces to a simple one parameter polynomial. We
show representative cases for the 𝜆 fits in Figure 2. We confirm the suppression of the O(𝜆4) term,
and the absence of 𝜆-odd terms, by including O(𝜆), O(𝜆3), and O(𝜆4) terms separately in the fit.
We find that any residual contamination has a negligible effect compared to the statistical error on
the extracted amplitudes.

The above analysis is performed to map out the 𝜔 dependence of the Compton structure
functions given in Equations (15) and (16) for each𝑄2 value that we study. F𝐿 (𝜔,𝑄2) is constructed
according to Equation (17). We show the 𝜔 dependence of the Compton structure functions, along
with their fit curves, in Figure 3 for a representative case of 𝑄2 ∼ 4.9 GeV2 calculated on the
483 × 96 ensemble.

The first few Mellin moments of 𝐹1, 𝐹2 and 𝐹𝐿 are determined by performing a simultaneous
fit to F 1 and F2 in a Bayesian framework at each 𝑄2 value. We use Equation (11) for F 1 and
express F2 in terms of the independently positive definite moments of 𝐹1 and 𝐹𝐿 ,

F2(𝜔)
𝜔

=
𝜏(

1 + 𝜏 𝜔2) ∞∑︁
𝑛=0

4𝜔2𝑛
[
𝑀

(1)
2𝑛 + 𝑀

(𝐿)
2𝑛

]
, (42)

where 𝜏 = 𝑄2/4𝑀2
𝑁

, 𝑀 (1)
0 (𝑄2) = 0, and 𝑀

(𝐿)
0 (𝑄2) = 4𝑀 2

𝑁

𝑄2 𝑀
(2)
2 (𝑄2). The intercept at 𝜔 = 0 is

proportional to the lowest moment of 𝐹2, i.e. 𝑀 (2)
2 (𝑄2). We truncate the series at 𝑛 = 4 (inclusive).

No dependence on higher-order terms is seen. We sample the moments from uniform distributions
with bounds 𝑀2(𝑄2) ∈ [0, 1] and 𝑀2𝑛 (𝑄2) ∈ [0, 𝑀2𝑛−2(𝑄2)], for 𝑛 > 1, to enforce the monotonic
decreasing nature of the moments, 𝑀2(𝑄2) ≥ 𝑀4(𝑄2) ≥ · · · ≥ 𝑀2𝑛 (𝑄2) ≥ · · · ≥ 0, for 𝑢𝑢 and 𝑑𝑑

contributions separately. Note that the positivity bound does not hold for the 𝑢𝑑 contributions but
they are constrained by

��𝑀𝑢𝑑
2𝑛 (𝑄2)

��2 ≤ 4𝑀𝑢𝑢
2𝑛 (𝑄

2)𝑀𝑑𝑑
2𝑛 (𝑄2), since the total inclusive cross section

(hence each moment) is positive for any value of the quark charges and at all kinematics. The
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Figure 3: 𝜔 dependence of the Compton structure functions F 1, F2, and F 𝐿 at 𝑄2 ∼ 4.9 GeV2 for the
𝑢𝑢 (top), 𝑑𝑑 (middle) and 𝑢𝑑 (bottom) contributions. Coloured shaded bands show the fits with their 68%
credible region of the highest posterior density. Points are displaced for clarity. Figure taken from [25].

sequences of individual 𝑢𝑢, 𝑑𝑑, and 𝑢𝑑 moments are selected according to the standard probability
distribution, exp(−𝜒2/2), where, 𝜒2 =

∑
F
∑

𝑖

[
Fmodel
𝑖

− F obs(𝜔𝑖)
]2 /𝜎2, is the 𝜒2 function with

𝜎2 the diagonal elements of the full covariance matrix. Here, F stands for F 1 and F2, and the
indices 𝑖, 𝑗 run through all the 𝜔 values and flavour-diagonal and mixed-flavour pieces. We account
for the correlations between the data points by a bootstrap analysis. Fits depicting the extraction of
the moments are also shown in Figure 3 by shaded bands for a representative case.

We show the lowest moments of 𝐹2 for proton in Figure 4 as a function of 𝑄2. Note that the
moments of the proton are constructed via 𝑀

(2,𝐿)
2, 𝑝 = 4

9𝑀
(2,𝐿)
2,𝑢𝑢 + 1

9𝑀
(2,𝐿)
2,𝑑𝑑 − 2

9𝑀
(2,𝐿)
2,𝑢𝑑 . Also shown are

the experimental determinations of the Cornwall-Norton moments of 𝐹2 [26]. We see a remarkable
agreement, although we should note that our systematics are not fully accounted for yet.

The Compton amplitude encompasses all power corrections, therefore it is possible to estimate
the leading power correction (i.e. twist-4) by studying the 𝑄2 behaviour of the moments in a twist
expansion,

𝑀
(2)
2,ℎ (𝑄

2) = 𝑀
(2)
2,ℎ + 𝐶

(2)
2,ℎ/𝑄

2 + O(1/𝑄4), (43)

where ℎ ∈ {𝑢𝑢, 𝑑𝑑, 𝑢𝑑, 𝑝}. Utilising only the 𝑀
(2)
2 (𝑄2) moments obtained on the 483 × 96 en-

semble, we study the power corrections down to 𝑄2 ≈ 1.5 GeV2. Our fit for proton is shown

10
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Figure 4: 𝑄2 dependence of the lowest moments of proton 𝐹2. Filled stars are the experimental Cornwall-
Norton moments of 𝐹2 [26]. Figure taken from [25].

in Figure 4. The extracted values for 𝑀
(2)
2,ℎ and 𝐶

(2)
2,ℎ are collected in Table 1. Although we

focus on the proton due to availability of experimental data, it is possible to estimate the mo-
ments for neutron or the isovector 𝑢 − 𝑑 combination since we have the contributions of differ-
ent flavour components. Power corrections are a combination of target mass corrections, pure
higher-twist terms, and the elastic contributions. These effects can be disentangled further, for
instance by determining the elastic contributions from form factors [27, 28], and employing Nacht-
mann moments [29] to account for the target mass corrections, along with including the logarith-
mic evolution of moments in Equation (43). We leave such an investigation to a future study.

Table 1: Asymptotic values of the mo-
ments and the coefficients of the leading
power correction terms. We quote the
power corrections at the scale of the nu-
cleon mass 𝑄2 = 𝑀2

𝑁
.

ℎ 𝑀
(2)
2,ℎ 𝐶

(2)
2,ℎ/𝑀

2
𝑁

𝑢𝑢 0.268(13) 0.206(24)
𝑑𝑑 0.146(7) 0.024(14)
𝑢𝑑 0.000(0) 0.007(3)
𝑝 0.135(6) 0.091(11)

In Figure 5, we show the lowest (Cornwall-Norton)
moments of 𝐹𝐿 in comparison to the experimentally de-
termined Nachtmann moments [30]. With our current
precision, we are able to set an upper bound for the mo-
ments that is compatible with the experimental moments.

The leading twist part of 𝐹𝐿 is related to 𝐹2 in
leading-order in 𝛼𝑠. In terms of moments this relation
reads [31],

𝑀
(𝐿) ,twist−2
2, 𝑝 (𝑄2) = 4

9𝜋
𝛼𝑠 (𝑄2)𝑀 (2) ,twist−2

2, 𝑝 (𝑄2), (44)

11
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where we have replaced the leading-twist moment on RHS with 𝑀
(2)
2, 𝑝 (𝑄

2) from the current work
as an approximation. We use the value of 𝛼𝑠 (𝑄2) determined in the 𝑀𝑆 scheme at 𝜇 = 𝑄2 at
the four-loop order. The 𝑄2 behaviour is in good agreement with experimental points as shown in
Figure 5. Improving the precision in future studies, would help to resolve the difference between the
direct determination and twist-2 part of the lowest few moments of 𝐹𝐿 and reveal the higher-twist
effects.

0 2 4 6 8
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0

10

20

30

40

M
(L

)
2
,p

(Q
2
)

×10−3

323 × 64

Direct

twist-2

483 × 96

Direct

twist-2

Exp.

Figure 5: 𝑄2 dependence of the lowest moments of proton 𝐹𝐿 (Direct). Open squares are the experimental
Nachtmann moments of 𝐹𝐿 [30]. We also show the moments (twist-2) determined via the relation, Equa-
tion (44). Twist-2 points are displaced for clarity. Figure taken from [25].

Finally, in Figure 6 we show the the 𝑢𝑢 and 𝑑𝑑 pieces of the polarised G1 Compton structure
function, along with the isovector 𝑢𝑢 − 𝑑𝑑 combination, as a function of 𝜔. We extract the first few
Mellin moments using Equation (14) by following the same Bayesian analysis performed for the
unpolarised case. Shaded bands in Figure 6 depict the resulting fits.

The lowest moment of 𝑔1 is a particularly interesting phenomenological quantity. It is directly
related to the matrix elements of the axial current at leading-twist. For instance, the leading-
twist contribution of the lowest isovector moment 𝑀̃ (1)

2,𝑢𝑢−𝑑𝑑 provides a complementary approach to
determining the nucleon isovector axial charge 𝑔𝐴 via the Bjorken sum rule [32, 33], or alternatively,
the QCD effective charge [34, 35]. However, our current results on polarised structure functions
are very preliminary. They are obtained on a single ensemble at a single photon virtuality, 𝑄2 ∼
4.9 GeV2 with limited statistics in an exploratory simulation. Although these are encouraging
results, more progress is needed.
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Figure 6: The polarised Compton structure function G1 (𝜔,𝑄2)/𝜔 as a function of 𝜔. We show the
preliminary result obtained on the 483 × 96 ensemble at 𝑄2 ∼ 4.9 GeV2.

7. Summary and outlook

The Compton amplitude approach has reached a certain maturity where it is possible to
directly investigate the structure functions including the effects beyond leading twist. We have
overviewed the relations between the forward Compton amplitude and the structure functions, and
described a novel extension of the Feynman-Hellmann techniques that simplifies the calculation of
the amplitude. We showed the versatility of this approach by calculating the moments of transverse
and longitudinal proton structure functions along with their 𝑄2 dependence. This allows us to study
the power corrections for the first time in a lattice calculation. Currently our calculations involve
configurations with two different lattice spacings and volumes, all at the 𝑆𝑈 (3) symmetric point.
Calculations on additional ensembles that cover a range of lattice spacings and pion masses are
required to fully account for systematic effects.

We are working towards extending our formalism to include the spin-dependent structure
functions. Our preliminary results are encouraging. Additionally, accessing the parity violating
structure function 𝐹3, by considering weak currents is an exciting future direction.
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