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We analyze in detail a sharp transition between the low-energy, low-dimensional eigenstates and the
high-energy chaotic bulk of the spectrum for a simple supersymmetric quantum-mechanical model
with Hamiltonian �̂�𝑆 =
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⊗ 𝐼 +𝑥1 ⊗𝜎1+𝑥2 ⊗𝜎3, which mimics the structure of the

Banks-Fischler-Susskind-Stanford (BFSS) matrix model, the spatially compactified N = 1 super-
Yang-Mills theory. We conjecture that this transition might be similar to the transition between the
𝐷0-brane and 𝑀-theory regimes in the BFSS model, and find that it does not lead to irregularities
in the thermodynamic equation of state. We demonstrate that real-time spectral form-factor for our
supersymmetric model exhibits the “ramp” behavior typical for quantum chaos. We also analyze
the entanglement entropy and the spectrum of the reduced density matrix of the eigenstates of �̂�𝑆 ,
considering one of the bosonic degrees of freedom as a subsystem. The entanglement entropy
of low-energy eigenstates appears to be practically energy-independent. Exactly at the onset of
random-matrix-type level spacing fluctuations, this behavior rapidly changes into a steady growth
of entanglement with energy. We demonstrate that the spectrum of the reduced density matrix
also exhibits universal level-spacing fluctuations towards its higher end, even for the ground state
of the supersymmetric model. Thus even the regularly spaced, non-chaotic eigenstates contain
some information about semi-classical chaotic dynamics at high energies.
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1. Introduction and overview

Chaotic real-time dynamics of Yang-Mills theory has been in the focus of intensive research
since 1980’s [1]. Classical chaos of Yang-Mills fields was discussed as one of the potential
mechanisms for fast apparent thermalisation in heavy-ion collisions [2, 3], with the conclusion that
the classical dynamics alone is not fast enough to agree with realistic estimates of thermalization
times.

There has been a renewed interest to chaos in Yang-Mills-like models driven by ideas from
holographic AdS/CFT duality. AdS/CFT duality maps thermalization process in supersymmetric
Yang-Mills theory to the formation of a black hole in AdS space, with the Hawking temperature
of a black hole being identified with the temperature of Yang-Mills fields [4, 5]. We can therefore
consider supersymmetric Yang-Mills theory as a microscopic model of AdS black hole dynamics.

Once Yang-Mills fields have thermalized, or, in a holographic dual description, once a black
hole is formed, we can also ask how fast the thermalized system absorbs infinitely small pertur-
bations. An equivalent question is how fast a black hole could scramble small bits of information
thrown into it (e.g. a book thrown into a black hole of solar mass). Various thought experi-
ments suggest that black holes are the fastest possible scramblers of information [6], which im-
plies, via holographic duality, that supersymmetric Yang-Mills theory should also be maximally
chaotic. At a more technical level, propagation or scrambling of small perturbations in quantum
systems can be characterized in terms of the so-called Out-of-Time-Order Correlators (OTOCs)
𝐶 (𝑡) = −⟨

[
�̂� (𝑡) , �̂� (0)

]2 ⟩, where the time-dependent operator �̂� (𝑡) is some measurable quantity,
and the operator �̂� (0) perturbs the ground state of the system at time 𝑡 = 0. For chaotic systems,
the OTOCs grow exponentially over some time range: 𝐶 (𝑡) ∼ 𝑒2_𝐿 𝑡 , where _𝐿 is the Lyapunov
exponent. Maldacena, Stanford and Shenker [7] demonstrated that for a wide class of quantum
systems with parametrically many degrees of freedom, the Lyapunov exponents obey the universal
bound _𝐿 ≤ 2𝜋 𝑇 . Correspondingly, “maximally chaotic systems” are systems that saturate the
bound. In the holographic dual description, the MSS bound is usually saturated for black hole
geometries. However, so far the only system for which the saturation of the MSS bound could
be explicitly demonstrated from the field theory side is the Sachdev-Ye-Kitaev (SYK) model of
interacting Majorana fermions [8].

Besides the well-known N = 4 supersymmetric Yang-Mills theory, one of the limits of super-
symmetric Yang-Mills theory with a particularly well understood holographic dual description is the
Banks-Fischler-Shenker-Susskind (BFSS) model [9], spatially compactified N = 1 supersymmetric
Yang-Mills theory in 𝑑 = 1 + 9 dimensions. Depending on the scaling limit of model parameters,
it is holographically dual to black 𝐷0-branes in type IIA superstring theory, or a Schwarzschild
black hole in 𝑀-theory [10–12]. Due to its relative simplicity, the BFSS model is convenient for
numerical studies of thermodynamics [11, 11, 13, 14] as well as real-time dynamics [15–17].

Of particular interest is the transition between 𝐷0-branes in type IIA superstring theory and the
Schwarzschild black hole in 𝑀-theory [10, 11, 14]. The temperature of this transition is expected to
decrease down to zero as the dimension of 𝑆𝑈 (𝑁) gauge group grows and approaches the large-𝑁
limit [10]. Numerical studies suggest that the Schwarzschild black hole/𝑀-theory regime is indeed
absent at large 𝑁 . On the other hand, a recent study [11] found signatures of the 𝑀-theory regime
in metastable states of Monte-Carlo simulations at low temperatures and finite 𝑁 . As any other
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black hole, the Schwarzschild black hole in 𝑀-theory can be expected to be maximally chaotic
and saturate the MSS bound on Lyapunov exponent. However, it is not clear what could be the
mechanism of this saturation. To be consistent with the MSS bound, the Lyapunov exponent _𝐿
should scale with the temperature 𝑇 as 𝑇 𝛼 with 𝛼 ≥ 1. On the other hand, a straightforward scaling
analysis suggests that classical chaotic dynamics leads to the scaling _𝐿 ∼ 𝑇1/4 [16–18]. Therefore,
some mechanism other than classical chaos should be responsible for the saturation of the MSS
bound at low temperatures. At low temperatures, the BFSS model is very strongly coupled. In the
absence of exact analytic solutions, we can only use numerical analysis to obtain some results in this
regime. While this is certainly possible for thermodynamic quantities [11, 11, 13, 14], real-time
dynamics of the BFSS model at sufficiently large 𝑁 is currently inaccessible to any numerical
method.

We can only hope to be able to get some non-perturbative results on real-time behavior of the
BFSS-like models for the smallest possible numbers of colors 𝑁 = 2 or 𝑁 = 3 and the smallest
number 𝑑 = 2 of spatial dimensions. With the current state of technology, the most obvious practical
method for simulating the real-time dynamics of the BFSS model with 𝑑 = 2 and 𝑁 = 2 is the
numerical exact diagonalization [17, 19]. Simulations on quantum computers might be possible as
well, but are beyond the capabilities of modern quantum devices [19]. Even for 𝑑 = 2, 𝑁 = 2, the
Hamiltonian of the BFSS model involves 6 bosonic and 3 fermionic degrees of freedom. Truncating
the bosonic degrees of freedom to Λ harmonic oscillator states, we are led to the Hilbert space with
overall size 8Λ6, which becomes prohibitively expensive even for Λ ≳ 5 [19].

In the early days of the BFSS model/𝑀-theory, de Wit, Lüscher and Nicolai [20] introduced a
significantly simpler supersymmetric Hamiltonian that captures the most important features of the
full BFSS model 1:

�̂�𝑆 = �̂�𝐵 ⊗ 𝐼 + 𝑥1 ⊗ 𝜎1 + 𝑥2 ⊗ 𝜎3 =

(
�̂�𝐵 + 𝑥2 𝑥1
𝑥1 �̂�𝐵 − 𝑥2

)
, (1)

�̂�𝐵 = 𝑝2
1 + 𝑝

2
2 + 𝑥

2
1 𝑥

2
2 . (2)

This Hamiltonian contains only two bosonic degrees of freedom 𝑥1 and 𝑥2 (with the canonical
conjugate momenta 𝑝1 and 𝑝2), and a single fermionic degree of freedom with a two-dimensional
Hilbert space. The Pauli matrices 𝜎1 and 𝜎3, or, equivalently, the 2 × 2 block matrix in the
last equality act on this two-dimensional Hilbert space. The potential energy term of the form
𝑥2

1 𝑥
2
2 mimics the non-Abelian commutator term Tr

( [
𝐴`, 𝐴a

]2
)

in the Yang-Mills action, and the
terms 𝑥1 ⊗ 𝜎1 + 𝑥2 ⊗ 𝜎3 mimic the coupling of gauge fields to fermions. With considerably less
degrees of freedom than for the 𝑆𝑈 (2) BFSS model, the model (1) can be studied numerically with
significantly higher precision.

The supersymmetric Hamiltonian (1) is the simplest supersymmetric extension of the bosonic
Hamiltonian �̂�𝐵 = 𝑝2

1 + 𝑝2
2 + 𝑥2

1 𝑥
2
2, which was extensively studied in the literature as one of

the simplest Hamiltonian systems that feature chaotic classical dynamics at all energies [21, 22].
The bosonic Hamiltonian �̂�𝐵 can be obtained as a zero angular momentum projection of 𝑆𝑈 (2)
bosonic matrix model [23–25], which is a dimensional reduction of 𝑆𝑈 (2) pure Yang-Mills theory

1In the original work [20], the supersymmetric Hamiltonian was written as �̂�𝑆 = �̂�𝐵 ⊗ 𝐼 + 𝑥1 ⊗ 𝜎1 + 𝑥2 ⊗ 𝜎2. In
these Proceedings, we follow [17] and use a global unitary transformation to represent �̂�𝑆 in a manifestly real form (1).
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in 𝑑 = 1 + 2 dimensions. A higher-dimensional generalization of this Hamiltonian was considered
recently in [26] using 1/𝑁 expansion techniques.

After the original work of de Wit, Lüscher and Nicolai [20], the supersymmetric Hamiltonian
(1) was studied numerically in [27, 28], and, more recently, in [17]. Truncation of the supersym-
metric Hamiltonian (1) in the basis of harmonic oscillator states was considered for the first time in
[28]. Unboundedness of classical trajectories and the coexistence of discrete and continuous spectra
for the Hamiltonian (1) were demonstrated in [27]. The work [27] also presented a detailed analysis
of the symmetry groups 𝐶4𝑣 and 𝐷4𝑑 of the bosonic and the supersymmetric Hamiltonians (2) and
(1). Exact analytic results for the spectrum of supersymmetric model with N = 2 supersymmetries
were presented in [29–32].

In a recent work [17] we considered the OTOCs for both the supersymmetric and the bosonic
Hamiltonians (1) and (2) and estimated the quantum Lyapunov exponents. Like in [19, 27, 28],
we used numerical exact diagonalization in the truncated basis of harmonic oscillator states with
level numbers 𝑘1, 𝑘2 (for coordinates 𝑥1 and 𝑥2), using only the states that satisfy 𝑘1 + 𝑘2 < 2𝑀 .
We found that supersymmetry results in a non-vanishing quantum Lyapunov exponent that scales
as the first power of temperature 𝑇 down to the lowest temperatures. On the other hand, for the
purely bosonic Hamiltonian (2) the Lyapunov exponent vanishes at a temperature 𝑇 ∼ 1. Therefore
the quantum Lyapunov exponents for both Hamiltonians are consistent with the MSS bound, but
only the supersymmetric model is chaotic at all temperatures. Quite unexpectedly, it turned out
that at high temperatures the quantum Lyapunov exponents agree with their classical counterparts
only for the supersymmetric system. We also found that the eigenstates of the supersymmetric
Hamiltonian have a very regular low-dimensional structure at low energies. Nevertheless, the
low-energy states maintain the growth of out-of-time-order correlators. At high temperatures or
energies, both the bosonic and the supersymmetric Hamiltonians are chaotic, with energy spectra
exhibiting the universal random-matrix-type level spacing fluctuations.

Figure 1: 𝑟-ratios 𝑟𝑖 , defined in (3), versus the energy level 𝐸𝑖 . On the right: for the bosonic model (2).
On the left: for the supersymmetric model (1). Only energy levels that transform under non-Abelian irreps
𝐸0 of 𝐶4𝑣 and 𝐸1 of 𝐷4𝑑 are analyzed. Solid magenta lines denote 𝑟-ratios averaged over all energy levels
within the interval marked by the width of the lines. Vertical dashed lines show the energy after which the
ordering of irreps becomes irregular.

The transition between the regular low-energy eigenstates and the chaotic high-energy bulk of

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
4
6

Quantum chaos in supersymmetric Yang-Mills-like model Pavel Buividovich

the spectrum appears to be quite sharp, even though the number of the degrees of freedom in our
system is small. We conjecture that this transition might be similar to the transition between the
𝐷0-brane regime and the Schwarzschild black hole/𝑀-theory regime in the BFSS matrix model,
discussed in [10] and studied numerically in [11]. This transition becomes most obvious if we
consider the 𝑟-ratios

𝑟𝑖 =
min (Δ𝐸𝑖−1,Δ𝐸𝑖)
max (Δ𝐸𝑖−1,Δ𝐸𝑖)

, (3)

where Δ𝐸𝑖 = 𝐸𝑖+1 − 𝐸𝑖 is the spacing between the adjacent energy levels. The 𝑟-ratios are sensitive
to statistical fluctuations in the energy spectrum and can be used to distinguish random-matrix-type
statistics with repulsion between energy levels from Poisson statistics [33–36]. For systems with
global symmetries, the 𝑟-ratios should be calculated for a subset of eigenstates that transform under
the same irreducible representation (irrep) of the symmetry group. In our case, the symmetry group
of the bosonic model is 𝐶4𝑣 with 5 irreps. The symmetry group of the supersymmetric model is
𝐷4𝑑 with 7 irreps [17, 27].

On Fig. 1, taken from our work [17], we compare the energy dependence of the 𝑟-ratios for the
bosonic Hamiltonian (2) and for the supersymmetric Hamiltonian (1). One can see that at sufficiently
high energies, the 𝑟-ratios are exhibiting very irregular behavior, filling almost uniformly all values
between 0 and 1. With sufficiently many energy levels, this allows us to perform a statistical
average over some interval of energies. For the high-energy spectra of both the supersymmetric
and the bosonic model, such averaging yields values that are very close to the universal value
𝑟𝐺𝑂𝐸 = 0.53 for the Gaussian Orthogonal Ensemble 2. For the supersymmetric Hamiltonian,
however, the 𝑟-ratios for the low-energy eigenstates behave in a completely regular way and do not
exhibit any quasi-statistical fluctuations. They are consistent with the phenomenological expression
𝐸𝑖 = 𝐴 (𝑀) + 𝐵 (𝑀) 𝑖 + 𝐶 (𝑀) 𝑖2, where 𝑖 is the serial number of the energy level for a given
irrep. The transition between the regular and the chaotic behaviors of 𝑟-ratios appears to be quite
sharp and happens around 𝐸 = 10, independently of the value of the regularization parameter 𝑀 .
This transition appears to be a distinctive feature of our supersymmetric model. We also explicitly
checked that the regular behavior of 𝑟-ratios is absent in the spectrum of the SYK model3.

In these Proceedings, we study how the transition between the low-energy regular eigenstates
and the high-energy chaotic eigenstates of the supersymmetric Hamiltonian (1) manifests itself in
quantities other than 𝑟-ratios. Specifically, we will consider the thermodynamic equation of state
(Section 2), the real-time spectral form-factors (Section 3), and the entanglement Hamiltonians
and entanglement entropy of excited states (Section 4). All these quantities can be also studied
within the framework of holographic AdS/CFT correspondence. We hope that our results might
shed light on the microscopic mechanism of the transition between the 𝐷0-brane regime and the
Schwarzschild black hole/𝑀-theory regime in the BFSS model [10, 11]. As in our work [17], we
will highlight the differences in the behavior of the supersymmetric and the bosonic Hamiltonians
throughout these Proceedings.

2Since both the bosonic and the supersymmetric Hamiltonians are manifestly real [17], the relevant ensemble here is
the Gaussian Orthogonal Ensemble.

3We thank Masaki Tezuka for kindly providing numerical data for the energy spectrum of the SYK model that was
used in [37].
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Figure 2: Mean energy 𝐸 (𝑇) (top row), thermodynamic entropy 𝑆 (𝑇) (middle row), and heat capacity
𝑑𝐸 (𝑇) /𝑑𝑇 (bottom row) as functions of the temperature 𝑇 for the bosonic model (2) (on the left) and for
the supersymmetric model (1) (on the right). 𝑀 in the plot legend is the Hilbert space truncation parameter,
and 𝑛 is the number of lowest energy levels used to calculate the equation of state.
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2. Equation of state

Let us first consider the thermodynamic equation of state for both the bosonic and the super-
symmetric Hamiltonians (2) and (1). We use numerical results for the energy levels 𝐸𝑖 to calculate
the mean energy 𝐸 (𝑇), the thermodynamic entropy 𝑆 (𝑇), and the heat capacity 𝑑𝐸 (𝑇) /𝑑𝑇 :

𝐸 (𝑇) = 𝑍−1 (𝑇)
∑︁
𝑖

𝐸𝑖 exp (−𝐸𝑖/𝑇) , 𝑍 (𝑇) =
∑︁
𝑖

exp (−𝐸𝑖/𝑇) , (4)

𝑆 (𝑇) = ln (𝑍) + 𝑇−1 𝐸 (𝑇) , (5)
𝑑𝐸 (𝑇)
𝑑𝑇

=
1

𝑍 (𝑇) 𝑇2

∑︁
𝑖

(𝐸𝑖 − 𝐸 (𝑇))2 exp (−𝐸𝑖/𝑇) . (6)

It is useful to compare the numerical results with the classical equation of state for the bosonic
Hamiltonian (which should also be the classical limit of the supersymmetric system). To obtain the
classical equation of state, we consider the classical thermodynamic partition function

𝑍𝑐𝑙 (𝑇) =
∫

𝑑𝑝1 𝑑𝑝2 exp

(
−
𝑝2

1 + 𝑝
2
2

𝑇

) ∫
𝑑𝑥1 𝑑𝑥2 exp

(
−
𝑥2

1𝑥
2
2

𝑇

)
. (7)

We now perform integrations over the momenta 𝑝1 and 𝑝2, and express the integration over 𝑥1 and
𝑥2 in terms of the new variables 𝑟 and 𝜙 as 𝑥1 = 𝑟 𝑒𝜙, 𝑥2 = 𝑟 𝑒−𝜙. This results in

𝑍𝑐𝑙 (𝑇) = 2 𝜋 𝑇
+∞∫

−∞

𝑑𝜙

+∞∫
0

𝑑𝑟 𝑟 exp
(
−𝑟

4

𝑇

)
. (8)

We see that integration over the “hyperbolic angle” 𝜙 completely factors out. Changing the
integration variable from 𝑟 to 𝑢 = 𝑟/𝑇1/4, we find the explicit dependence of 𝑍𝑐𝑙 (𝑇) on the
temperature 𝑇 up to an overall normalization factor N , which also absorbs any divergences due to
infinite range of integration over 𝜙:

𝑍𝑐𝑙 (𝑇) = N 𝑇3/2. (9)

From this, we immediately find the classical equation of state in which the multiplicative divergence
of 𝑍𝑐𝑙 (𝑇) cancels out:

𝐸𝑐𝑙 (𝑇) = 𝑇2 𝜕 log (𝑍𝑐𝑙 (𝑇))
𝜕𝑇

=
3
2
𝑇. (10)

We show our numerical results for the equation of state on Fig. 2, comparing the cases of the
bosonic Hamiltonian (2) (on the left) and the supersymmetric Hamiltonian (1) (on the right). We
also show the classical equation of state (10) on the plots of the energy 𝐸 (𝑇). We see that the
equation of state for the bosonic model has a typical behavior for a gapped system: 𝐸 (𝑇) tends to a
finite value at 𝑇 = 0, while the entropy and the heat capacity approach zero. At higher energies, the
equation of state becomes similar to the classical one. Effects of Hilbert space truncation appear to
be small for the bosonic case.

On the other hand, for the supersymmetric model the energy 𝐸 (𝑇) goes to zero at 𝑇 = 0.
The heat capacity (or, equivalently, the slope of the function 𝐸 (𝑇)) is again close to the classical
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value 𝑑𝐸𝑐𝑙 (𝑇 )
𝑑𝑇

= 3
2 (10) at high energies. At low energies, it appears to be very close to the value

𝑑𝐸1𝐷 (𝑇 )
𝑑𝑇

= 1
2 for a one-dimensional ideal gas, in full accordance with the nearly one-dimensional

structure of the corresponding wave functions [17].
The effects of Hilbert space truncation are quite strong for the supersymmetric Hamiltonian, as

can be expected for a system with a continuous spectrum. In particular, the high-temperature results
are completely unreliable at large values of 𝑀 , where we use 𝑛 = O (100) lowest eigenstates to
calculate thermodynamic quantities. At sufficiently low temperatures, however, all results converge
and are numerically reliable.

Overall, we do not see any signatures of thermodynamic singularity at intermediate tempera-
tures in any thermodynamic quantities. This suggests that, at least for our low-dimensional models,
the sharp transition between the regular and chaotic behavior of Hamiltonian eigenstates, as seen on
the right plot on Fig. 1, is not manifesting itself in a sharp change of any thermodynamic quantities.
Of course, there is still a chance that such thermodynamic singularities can still appear in the full
BFSS model, especially in the large-𝑁 limit.

3. Spectral form-factors

Bosonic, M=70

Supersymmetric, M=70
Bosonic, M=100

Supersymmetric, M=100

10-4 0.1 100

0.001

0.010

0.100

1

t

K(
t,
T)

Figure 3: Real-time spectral form-factors (11) as functions of the evolution time 𝑡 for the bosonic model (2)
(on the left) and for the supersymmetric model (1) (on the right). The temperature is 𝑇 = 20. Dashed lines
visually highlight the approximate “ramp” behavior.

Real-time spectral form-factors

𝐾 (𝑡) = 𝑍−1 (𝑇)
��Tr exp

(
𝑖�̂�𝑡 − �̂�/𝑇

) �� (11)

provide an alternative way to diagnose quantum chaos using real-time quantities. Here we use the
finite-temperature partition function 𝑍 (𝑇), defined in (4), to impose the normalization 𝐾 (0) = 1.
While spectral form-factors do not have such a clear physical interpretation as out-of-time-order
correlators, they are technically much easier to calculate. From theoretical point of view, one can
consider the infinite-temperature limit of 𝐾 (𝑡), but in practical calculations a cut-off on higher
energy levels is often required to remove noise [38] and turn 𝐾 (𝑡) into a relatively smooth function.
Introducing finite temperature is one possible way to introduce such a cut-off.

After initial quick decay, spectral form-factors for chaotic systems with universal random-
matrix-type correlations between energy levels described by a Gaussian Unitary Ensemble exhibit
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a period of linear-in-time growth 𝐾 (𝑡) ∼ 𝑡, followed by saturation [38, 39]. This time dependence
looks like a characteristic ramp on the log-log-scale plot of 𝐾 (𝑡). For the Gaussian Orthogonal
Ensemble (GOE), the “cusp” of the ramp is smoothed out (see Section 3.2.2 in [40]), but otherwise
does not significantly change its shape in comparison to the GUE result.

We show our results for the real-time spectral form-factors 𝐾 (𝑡) of the bosonic and the
supersymmetric Hamiltonians at a high temperature 𝑇 = 20 on Fig. 3. As expected, for both the
bosonic and the supersymmetric cases we see a period of approximately linear growth after initial
fast decay, which is followed by saturation at late times. Numerical noise, however, obstructs a
clear identification of the ramp and its slope. Dashed lines on Fig. 3 are just intended to guide the
eye. Presumably, we need larger values of the cutoff 𝑀 wih more eigenstates 𝑛 to produce better
plots for spectral form-factors. It is also possible that spectral form-factors simply work better for
systems with quenched disorder. With the available data, further decreasing the temperature 𝑇 does
not remove the noise, but merely increases the typical scale of fluctuations, which obstructs the
ramp identification even more. So our value 𝑇 = 0.05 is close to the optimal value that allows to
see something like a ramp. It is also interesting to note that before the onset of the ramp behavior,
spectral form-factors for both Hamiltonians (2) and (1) exhibit a period of clear power-law decay,
which looks like a linear dependence of log (𝐾 (𝑡)) on log (𝑡) on our log-log scale plot on Fig. 3.
The decay/growth rates at early times and in the ramp region are, however, clearly different for the
bosonic and for the supersymmetric Hamiltonian, even though they both should belong to the same
GOE universality class.

Figure 4: Energy dependence of the eigenstate entanglement entropy 𝑆𝐴 (𝐸), where the observable subsystem
is one of the bosonic degrees of freedom. On the right: for the bosonic model (2). On the left: for the
supersymmetric model (1). Opaque vertical bars marked with letters denote the energy intervals for which
we show the spectra of the entanglement Hamiltonian on Fig. 6.

4. Eigenstate entanglement entropy

Ground-state entanglement entropy has attracted enormous attention in quantum field theory
and in quantum many-body physics as a universal probe of quantum transitions and topological
order that is independent of any order parameters. Entanglement properties of higher eigenstates
provide even more information about many-body quantum systems [41]. Eigenstate entanglement
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Figure 5: Energy dependence of the entanglement entropy of the fermionic degree of freedom for excited
states.

has also proven useful in the context of many-body quantum chaos, in particular, as a probe of
Eigenstate Thermalization Hypothesis (ETH). In systems where ETH holds, entanglement entropy
of excited states leads to emergent thermodynamics for sub-systems of a large system [42–45]. For
an observer that has only access to a relatively small part of the whole system, typical eigenstates
in the chaotic bulk of the spectrum look like thermal states. All the information that is available
by accessing only a part 𝐴 of the whole system that is in an eigenstate |Ψ⟩ on a Hamiltonian �̂� is
encoded in its reduced density matrix �̂�𝐴:

�̂�𝐴 = Tr 𝐵 |Ψ⟩⟨Ψ| ≡ 𝑒−�̂�𝐴, (12)

where Tr 𝐵 (. . .) denotes a trace over all degrees of freedom that do not belong to subsystem 𝐴,
collectively denoted as 𝐵. Sometimes one also writes the reduced density matrix in terms of an
entanglement Hamiltonian �̂�𝐴, that is often referred to as a “modular Hamiltonian” in the literature
on holographic duality. Entanglement entropy of a state |Ψ⟩ is defined as the von Neumann entropy
of the reduced density matrix �̂�𝐴:

𝑆𝐴 = −Tr 𝐴 ( �̂�𝐴 log ( �̂�𝐴)) . (13)

Plotting the entanglement entropy of eigenstates as a function of the energy of the state, we can
obtain the entanglement “equation of state” 𝑆𝐴 (𝐸) , and even define the “entanglement temperature”
𝑇−1
𝐴

=
𝑑𝑆𝐴 (𝐸 )

𝑑𝐸
[46, 47].

In the context of holographic duality, ground-state entanglement entropy of conformal field
theories is interpreted as a minimal area of the surface in a holographic dual space-time that spans
on the boundary of a subsystem 𝐴 [48]. Likewise, entanglement entropy of higher eigenstates is
dual to minimal surfaces in space-times that are perturbations of the ground-state dual space-time
[49]. In this respect, eigenstate entanglement entropy allows to trace how the dual space-time
changes upon injecting more energy into the system in an adiabatic way.

Although our Hamiltonians �̂�𝐵 and �̂�𝑆 have just a few degrees of freedom, we can still
calculate the entanglement entropies and the entanglement Hamiltonians. For the bosonic system
with the Hamiltonian (2), the only possibility is to consider the entanglement between the Hilbert
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spaces associated with the two bosonic degrees of freedom 𝑥1 and 𝑥2. Correspondingly, we obtain
the reduced density matrix by tracing out 𝑥2:

𝜌𝐴
(
𝑥1, 𝑥

′
1
)
=

+∞∫
−∞

𝑑𝑥2 Ψ (𝑥1, 𝑥2) Ψ̄
(
𝑥′1, 𝑥2

)
, (14)

where Ψ (𝑥1, 𝑥2) is the wave function of the eigenstate |Ψ⟩. For the supersymmetric system with
the Hamiltonian (1), we have two options. The first is to consider 𝑥1 as a subsystem and to trace
out 𝑥2 and the fermionic degree of freedom. The second one is to consider the fermionic degree
of freedom as a subsystem, and to trace out both bosonic degrees of freedom. Correspondingly,
we obtain two different density matrices, which we denote as �̂�𝐴 and �̂�𝐹 , where the subscript “F”
stands for “fermionic”:

𝜌𝐴
(
𝑥1, 𝑥

′
1
)
=

+∞∫
−∞

𝑑𝑥2
∑︁
𝛼

Ψ𝛼 (𝑥1, 𝑥2) Ψ̄𝛼

(
𝑥′1, 𝑥2

)
, (15)

(𝜌𝐹)𝛼𝛽 =

+∞∫
−∞

𝑑𝑥1 𝑑𝑥2 Ψ𝛼 (𝑥1, 𝑥2) Ψ̄𝛽 (𝑥1, 𝑥2) . (16)

The indices 𝛼, 𝛽 = 1, 2 correspond to the fermionic part of the Hilbert space, acted upon by the Pauli
matrices in (1). The corresponding entanglement entropies, defined according to (13), are denoted
as 𝑆𝐴 and 𝑆𝐹 . With our truncations of the Hilbert space, the density matrix 𝜌𝐴 is equivalent to an
𝑀 × 𝑀 matrix for both the bosonic and the supersymmetric systems.

On Fig. 4 we show the dependence of the eigenstate entanglement entropies on the eigenstate
energy 𝐸 for the bosonic and the supersymmetric systems, where the subsystem 𝐴 is the bosonic
degree of freedom 𝑥1. Again, on all plots we select only energy levels that transform under a
non-Abelian irrep E0 (in the bosonic case) or E1 (in the supersymmetric case), see Appendix A in
[17] for more details. For other irreps, the situations is qualitatively similar.

For the bosonic Hamiltonian, the entanglement entropy 𝑆𝐴 grows as approximately log (𝐸) for
𝐸 ≲ 102. For 𝐸 ≳ 102, 𝑆𝐴 reaches a plateau with a height of approximately 𝑆𝐴

(
𝐸 ≳ 102) ≈ 3.5.

This value is close to, but somewhat smaller than the Page value 𝑆𝑃𝑎𝑔𝑒 = log2 (𝑀) − 1
2 of the

entanglement entropy of a random state distributed uniformly over the entire Hilbert space. For
𝑀 = 70, 𝑆𝑃𝑎𝑔𝑒 = 3.7. For 𝑀 = 100, 𝑆𝑃𝑎𝑔𝑒 = 4.1. The saturation of 𝑆𝐴 (𝐸) happens at
approximately the same energy at which the 𝑟-ratio values on the left plot on Fig. 1 fill the entire
interval 𝑟 ∈ [0, 1]. The saturation of entanglement entropy for the high-energy bulk of the spectrum
supports the validity of the ETH for these eigenstates.

For the supersymmetric system (1), the entanglement entropy 𝑆𝐴 (𝐸) practically does not
depend on the energy 𝐸 in the low-energy part of the spectrum that corresponds to regularly
behaved 𝑟-ratios on the right plot on Fig. 1. The value of 𝑆𝐴 for this part of the spectrum is also
quite small. For energies 𝐸 ≳ 101, where the 𝑟-ratios start exhibiting random fluctuations, the
entanglement entropy also starts growing in a way similar to the one in the bosonic model. This
growth saturates at 𝐸 ≳ 5 · 102, where also the 𝑟-ratios on the right plot on Fig. 1 are fully random.
The saturation value is also reasonably close to the Page limit 𝑆𝑃𝑎𝑔𝑒.

11



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
4
6

Quantum chaos in supersymmetric Yang-Mills-like model Pavel Buividovich

For completeness, on Fig. 5 we also show the energy dependence of the fermionic entanglement
entropy 𝑆𝐹 . It also has a weak energy dependence for the low-energy part of the spectrum, and
gradually grows to the maximal possible value 𝑆𝐹 = log (2) towards higher energies.

Figure 6: Entanglement spectra of excited states at different energies for the bosonic (on the right) and
the supersymmetric (on the left) models. In the upper row, only the ground-state entanglement spectrum
is shown. In the two lower rows, spectra of all eigenstates within the shaded bands on Fig. 4 are combined
together.

Finally, due to numerical exact diagonalization providing the full access to the wave functions
of the system, we can also calculate the full spectrum of the entanglement Hamiltonian �̂�𝐴 in (12).
Entanglement Hamiltonian is a much more detailed probe of the system than the entanglement
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entropy. It has been demonstrated to have many universal properties in the context of conformal
field theories and holographic duality. For spherical entangled regions 𝐴 in conformal field theories,
the entanglement Hamiltonian is related to a certain integral of the component 𝑇00 of the energy-
momentum tensor over the region 𝐴 [50]. For two-dimensional conformal field theories, the
spectrum of �̂�𝐴 is universal and only depends on the central charge [51].

For systems with quantum chaos, one can ask whether the spectrum of the entanglement
Hamiltonian inherits statistical properties of the full spectrum of the system. This was demonstrated
in [52] using perturbation theory combined with random matrix techniques. In these Proceedings
we will numerically demonstrate that this statement is true for our Hamiltonian systems which
feature quantum chaos.

To analyze our numerical data for the spectrum of entanglement Hamiltonian �̂�𝐴, we calculate
the 𝑟-ratios (3) for the eigenvalues 𝜖𝑖 of �̂�𝐴 (that are just minus the logs of the eigenvalues of �̂�𝐴), and
plot them as functions of 𝜖𝑖 on Fig. 6. In all cases, the subsystem 𝐴 is a coordinate 𝑥1. We consider
three different ranges of energy: first, in the top two plots on Fig. 6 we show the entanglement
spectrum for the ground states of both the bosonic and the supersymmetric Hamiltonians. In the
middle-row and lowest-row plots, we combine the entanglement spectra for all eigenstates within a
finite-width range of energies, shown as shaded bands on Fig. 4. The middle-row plots correspond
to the parts of the spectra of �̂�𝐵 and �̂�𝑆 where the entanglement entropy grows with energy. In the
bottom-row plots, we also consider a range of energies for which the entanglement entropy saturates
near the Page value.

Ground-state entanglement spectra appear to have quite a nontrivial structure for both bosonic
and supersymmetric Hamiltonians. In the bosonic case, the 𝑟-ratios of 𝜖𝑖 stay very close to 𝑟 = 1
and do not exhibit noticeable statistical fluctuations at small 𝜖 . At higher 𝜖 , they start fluctuating
randomly and eventually fill up the entire range 𝑟 ∈ [0, 1]. Averaging 𝑟𝑖 over a finite range of 𝜖𝑖 ,
which is again shown on Fig. 6 as a solid horizontal line, we obtain the values that are close to the
GOE random matrix ensemble result 𝑟𝐺𝑂𝐸 = 0.53.

In the supersymmetric case, the ground state apparently belongs to the family of very regular
low-energy states. The behavior of 𝑟-ratios at low 𝜖𝑖 again appears to be regular, but not monotonous
with respect to 𝜖𝑖 . What is most nontrivial, however, is that at high values of 𝜖 the 𝑟-ratios also
fluctuate randomly and fill up the entire range 𝑟 ∈ [0, 1]. This implies that even though the
ground state of our supersymmetric model (1) is deeply in the regime of regular, low-dimensional
eigenstates, the information about the chaotic behavior in the high-energy bulk of the spectrum is
somehow still encoded in its reduced density matrix.

Looking at the entanglement spectra of the higher-energy eigenstates (middle and bottom row
on Fig. 6), we note that the 𝑟-ratios are randomly fluctuating and filling the entire interval 𝑟 ∈ [0, 1]
at more or less all values of 𝜖 . In full agreement with the predictions of [52], we find that mean
values of 𝑟 averaged over a finite range of 𝜖 are very close to the GOE result 𝑟𝐺𝑂𝐸 = 0.53.

5. Discussion and conclusions

In these proceedings, we analyzed in detail the transition between the low-energy, low-
dimensional eigenstates and the high-energy chaotic bulk of the spectrum for a simple super-
symmetric quantum-mechanical model which mimics the structure of the BFSS matrix model [20].
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In our work [17] we found that the low-energy eigenstates in this model support the growth of out-
of-time-order correlators at low energies, even though they do not show any apparent signatures of
quantum chaos. A proof of the continuity of the energy spectrum of the BFSS model, presented by
de Wit, Lüscher and Nicolai in [20] and illustrated using the simple model (1), suggests that similar
low-energy eigenstates may also exist in the BFSS model. Given that at very low temperatures the
BFSS model is expected to be holographically dual to a Schwarzschild black hole in 𝑀-theory, such
low-energy eigenstates should presumably saturate the MSS bound on quantum Lyapunov exponent,
making the system “maximally chaotic”. It is therefore important to understand possible structure
of low-energy eigenstates of the BFSS model. In these Proceedings, we presented a more detailed
analysis of the properties of low-energy eigenstates which complements the results presented in
[17].

Our first conclusion is that a sharp transition between the regular behavior of low-energy
eigenstates and the chaotic, semi-classical behavior of higher-energy eigenstates does not lead to
noticeable irregularities in the thermodynamic equation of state. It might well be that this transition
only manifests itself in real-time quantities. Of course, thermodynamic singularities might still
appear in the large-𝑁 limit, for example, as higher-order phase transitions of Gross-Witten-Wadia
type [53].

We also considered real-time spectral form-factors𝐾 (𝑡) = Tr
(
𝑒𝑖�̂�𝑡−�̂�/𝑇

)
at high temperatures

𝑇 and found signatures of the universal “ramp” behavior [38, 39] for both the supersymmetric and
the bosonic Hamiltonians.

Our analysis of the entanglement entropy and entanglement spectrum of higher-energy eigen-
states revealed some more nontrivial features of the low-energy to high-energy bulk transition. At
high energies, the entanglement entropy 𝑆𝐴 (𝐸) behaves similarly in both the bosonic and the su-
persymmetric model, first growing with energy, and then saturating close to the Page entanglement
entropy for a typical random (with respect to the Haar measure) state. This saturation supports the
Eigenstate Thermalization Hypothesis (ETH) for the high-energy bulk of the spectrum. However,
the entanglement entropy is practically energy-independent for the low-energy eigenstates of the su-
persymmetric model. The sharp transition between the low- and the high-temperature regimes seen
in the 𝑟-ratio plot on Fig. 1 is also seen as a rather sharp onset of the growth of entanglement entropy
with energy. For a system with a holographic dual description, such as the BFSS model, the weak
energy dependence of 𝑆𝐴 (𝐸) would imply that the geometry of the dual space-time does not change
much upon adiabatic pumping of energy into the system. It would be interesting to understand what
is the physical interpretation of this property, in particular, for the 𝑀-theory Schwarzschild black
hole background that might be dual to low-energy part of the spectrum [10, 11].

We also found some nontrivial features in the entanglement spectra of both the bosonic and the
supersymmetric Hamiltonians. In both cases, the ground-state entanglement spectra are regularly
spaced at low values of “entanglement energies” 𝜖 , and start exhibiting universal random-matrix
type level spacing fluctuations towards large 𝜖 . This observation seems especially nontrivial for
the supersymmetric model, as even the very regular low-energy states appear to still contain some
information about the nearly-classical chaotic behavior of the system at high energies. Finally, we
demonstrated that for eigenstates deep in the bulk of the spectrum of the original Hamiltonians �̂�𝐵

and �̂�𝑆 the entanglement spectrum is also well described by the universal Gaussian Orthogonal
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Ensemble of random matrices.
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