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Fourier acceleration is a technique used in Hybrid Monte Carlo simulations to decrease the
autocorrelation between subsequent field configurations in the generated ensemble. It has been
shown, in the perturbative limit, to eliminate the problem of critical slowing down in a 𝜙4 theory [1].
As a result, there are several techniques that are being explored to generalize Fourier acceleration
to work with non-Abelian gauge theories like QCD [2][3]. It is hoped that these methods will prove
effective at overcoming the problem of critical slowing down, even in the non-perturbative limit.
In our work, we show that Fourier acceleration can be applied effectively to a linear sigma model
in the symmetry broken phase, leading to reduced autocorrelation and faster thermalization. We
present an algorithm for estimating the optimal Fourier acceleration masses dynamically, based
on the lattice data. In the future, we hope to explore the effectiveness of these techniques in the
strongly-interacting case. Since our 𝜙4 theory is a linear chiral effective theory for QCD, this
could be interesting for those who are seeking to generalize Fourier acceleration to QCD.
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1. Introduction

1.1 The Linear Sigma Model

We studied the linear sigma model in Euclidean spacetime with four scalar fields. The
Lagrangian density for this theory is

L(𝑥) = 1
2

∑︁
𝜇,𝑖

(𝜕𝜇𝜙𝑖 (𝑥))2 + 𝑚2

2

∑︁
𝑖

𝜙𝑖 (𝑥)2 + 𝜆

4!

(∑︁
𝑖

𝜙𝑖 (𝑥)2

)2

+ 𝛼𝜙0(𝑥),

where 𝑖 runs from 0 to 3. This model is of particular interest because it it can be used as a chiral
effective theory for two-flavor QCD. When 𝛼 = 0, this model has an 𝑂 (4) symmetry, which has the
same Lie algebra as the chiral 𝑆𝑈 (4) symmetry of QCD. The 𝛼𝜙0 term that explicitly breaks this
symmetry plays the role of the quark mass. When 𝑚2 < 0, the symmetry is spontaneously broken,
just like chiral symmetry in QCD.

1.2 The Hybrid Monte Carlo Algorithm

To simulate this field theory, we used the Hybrid Monte Carlo method [4]. We introduced a
new set of four fields Π𝑖 (𝑥) and simulated the classical field theory given by the Hamiltonian

𝐻 =
∑︁
𝑥

[
1

2𝑀

∑︁
𝑖

(Π𝑖 (𝑥))2 + L(𝑥)
]
,

with each Π𝑖 (𝑥) serving as the momentum conjugate to 𝜙𝑖 (𝑥). Starting from some initial field
configuration 𝜙𝑖 (𝑥), we choose a random momentum field configuration Π𝑖 (𝑥) according to the
probability density 𝑒−Π𝑖 (𝑥 )2/(2𝑀 ) . Then we evolved 𝜙𝑖 (𝑥) and Π𝑖 (𝑥) using the classical equations
of motion. After evolving for one unit of time, we performed a Metropolis accept/reject step to
decide whether to add the new configuration 𝜙𝑖 (𝑥) to our ensemble. Then the momentum field was
updated again, and we repeated the process.

1.3 Fourier Acceleration

In our simulations, we employed a technique called Fourier acceleration to speed up our
calculations [5]. We can write our Hamiltonian in momentum space as

𝐻 =
∑︁
𝑝

[
1

2𝑀

∑︁
𝑖

|Π̃𝑖 (𝑝) |2 + L̃(𝑝)
]
.

We can modify our kinetic term by allowing 𝑀 to be different for different momentum modes.

𝐻 =
∑︁
𝑝

[
1
2

∑︁
𝑖

|Π̃𝑖 (𝑝) |2
𝑀𝑖 (𝑝)

+ L̃(𝑝)
]
.

In position space, this kinetic term can be written as 1
2
∑

𝑖,𝑥,𝑦 Π𝑖 (𝑥)𝐺 (𝑥 − 𝑦)Π𝑖 (𝑦) with the appro-
priate choice of the kernel 𝐺 (𝑥 − 𝑦). When we simulate using this new Hamiltonian, the rate at
which each momentum mode evolves can be adjusted by adjusting 𝑀𝑖 (𝑝). Now, in the free theory
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(𝜆 = 𝛼 = 0), each momentum mode evolves as an independent harmonic oscillator with angular
frequency

𝜔𝑖 (𝑝) =

√︄
𝑚2 + 8 − 2

∑
𝜇 cos 𝑝𝜇

𝑀𝑖 (𝑝)
,

(𝑚 is the mass parameter that appears in the Lagrangian, not the Fourier acceleration mass 𝑀𝑖 (𝑝)).
We can choose 𝑀𝑖 (𝑝) so that each mode evolves at the same rate, which allows us to avoid wasting
time simulating rapid evolution for some modes while other modes evolve only a little. Even better,
we can choose 𝑀𝑖 (𝑝) so that 𝜔𝑖 (𝑝) = 𝜋

2 for each momentum mode. With this choice, the field
configurations in our ensemble will be completely decorrelated. This is because each Π𝑖 (𝑝) is 𝜋/2
radians out of phase with 𝜙𝑖 (𝑝). Therefore, after evolving for one time unit with 𝜔𝑖 (𝑝) = 𝜋/2,
the final field value 𝜙𝑖 (𝑝) will be in phase with the initial momentum Π𝑖 (𝑝), which was chosen
randomly.

For non-free theories (𝜆, 𝛼 ≠ 0), the momentum modes are not completely independent and
do not behave like perfect harmonic oscillators. However, Fourier acceleration can still be used to
decrease the correlation between subsequent field configurations in our ensemble.

2. Methods

2.1 Choosing Fourier Acceleration Masses

To determine the optimal Fourier acceleration masses to use for each mode, we used an iterative
algorithm. For each trajectory, we calculated the average of the modulus of the real part of the force,
⟨|Re[ ¤Π𝑖 (𝑝)] |⟩, on each momentum mode over the course of the HMC evolution. We also calculated
the average of the modulus of the real part of the deviation of the field from its vacuum expectation
value (which is zero for all modes except the zero mode of 𝜙0) ⟨|Re[𝜙𝑖 (𝑝) − 𝜎𝑣𝑒𝑣𝛿𝑖,0𝛿𝑝,0] |⟩. If we
make the assumption that each mode is an independent harmonic oscillator, then

𝜔2
𝑖 (𝑝) =

1
𝑀𝑖 (𝑝)

⟨| ¤Π𝑖 (𝑝) |⟩
⟨|𝜙𝑖 (𝑝) − 𝜎𝑣𝑒𝑣𝛿𝑖,0𝛿𝑝,0 |⟩

.

Our basic algorithm works as follows:

• For a given set of Fourier acceleration masses 𝑀𝑖 (𝑝), run a batch of trajectories. On each
trajectory, calculate ⟨| ¤Π𝑖 (𝑝) |⟩ and ⟨|𝜙𝑖 (𝑝) − 𝜎𝑣𝑒𝑣𝛿𝑖,0𝛿𝑝,0 |⟩.

• Calculate the average of ⟨| ¤Π𝑖 (𝑝) |⟩ and ⟨|𝜙𝑖 (𝑝) − 𝜎𝑣𝑒𝑣𝛿𝑖,0𝛿𝑝,0 |⟩ over the preceding batch of
trajectories and take their ratio ⟨ | ¤Π𝑖 (𝑝) | ⟩

⟨ |𝜙𝑖 (𝑝)−𝜎𝑣𝑒𝑣 𝛿𝑖,0 𝛿𝑝,0 | ⟩ .

• Choose a new set of Fourier acceleration masses by taking

𝑀𝑖 (𝑝) =
4
𝜋2

⟨| ¤Π𝑖 (𝑝) |⟩
⟨|𝜙𝑖 (𝑝) − 𝜎𝑣𝑒𝑣𝛿𝑖,0𝛿𝑝,0 |⟩

.

This choice is designed with the goal of making each mode oscillate at angular frequency
𝜔 = 𝜋

2 .
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• To avoid numerical instabilities, impose a lower bound on the masses proportional to
⟨| ¤Π𝑖 (𝑝) |⟩, with the constant of proportionality set by hand as appropriate for different param-
eters.

• Impose an absolute lower bound on the masses, also set by hand.

• Repeat this procedure, using the new Fourier acceleration masses, for a new batch of trajec-
tories.

2.2 Measuring Observables

2.2.1 Particle Masses

The term𝛼𝜙0 in the Lagrangian picks out a unique ground state so that when the𝑂 (4) symmetry
is spontaneously broken, the 𝜙𝑖 degrees of freedom for 𝑖 = 1, 2, 3 always correspond to the pion
degrees of freedom (the approximate goldstone bosons that result from the spontaneous breaking of
the 𝑂 (4) symmetry). Meanwhile, the 𝜙0 degree of freedom, minus its vacuum expectation value,
corresponds to the sigma degree of freedom. We calculate the pion and sigma masses by fitting the
correlation functions of these fields.

2.2.2 The Pion Decay Constant

To determine the effective pion decay constant 𝐹𝜋 , we start with the continuum relation

⟨0|𝐴𝑖
0(x, 𝑡) |𝜋

𝑖 (p = 0)⟩ = 𝐹𝜋𝑚𝜋𝑒
−𝑚𝜋 𝑡 .

On the finite lattice, this becomes

⟨0|𝐴𝑖
0(x, 𝑡) |𝜋

𝑖 (p = 0)⟩ = 2𝐹𝜋𝑚𝜋𝑒
−𝑚𝜋𝑁𝑇/2 sinh((𝑁𝑇/2 − 𝑡 + 1/2)𝑚𝜋),

where 𝐴𝑖
𝜇 (𝑥) = 𝜙0(𝑥 − 𝜇)𝜙𝑖 (𝑥) − 𝜙0(𝑥)𝜙𝑖 (𝑥 − 𝜇) is a discretization of the conserved current

associated with the broken part of the 𝑆𝑂 (4) symmetry. We use 𝑡 − 1/2 instead of 𝑡 in the above
equation because our lattice definition of 𝐴𝑖

0 combines fields at 𝑡 and 𝑡 − 1. In terms of the 𝜙𝑖 fields,
this gives us

𝐹𝜋 =

⟨0|
(∑

x 𝐴
𝑖
0(x, 𝑡)

)
(∑x′ 𝜙𝑖 (x′, 0)) |0⟩√︁

⟨0| (∑x′ 𝜙𝑖 (x′, 𝑡′)) (
∑

x′′ 𝜙𝑖 (x′′, 0)) |0⟩

√︁
cosh((𝑁𝑇/2 − 𝑡′)𝑚𝜋)√︁

𝑚𝜋𝑉𝑥𝑒
−𝑚𝜋𝑁𝑇/2 sinh((𝑁𝑇/2 − 𝑡 + 1/2)𝑚𝜋)

.

We could just extract the decay constant using the above expression, but to get a more stable
fit, we can use Noether’s theorem for the lattice to get

∑
𝜇

(
𝐴𝑖
𝜇 (𝑥 + 𝜇) − 𝐴𝑖

𝜇 (𝑥)
)
= −𝛼𝜙𝑖 (𝑥). From

this, we get

𝐹𝜋 = − 𝛼⟨0|𝜙𝑖 (𝑥) |𝜋𝑖 (p = 0)⟩
2𝑚𝜋𝑒

−𝑁𝑇𝑚𝜋/2
(
sinh((𝑁𝑇/2 − 𝑡 − 1/2)𝑚𝜋) − sinh((𝑁𝑇/2 − 𝑡 + 1/2)𝑚𝜋)

) .
In terms of the 𝜙𝑖 fields, this is

𝐹𝜋 = −
𝛼
√︁

cosh((𝑁𝑇/2 − 𝑡)𝑚𝜋)
√︁
⟨0| (∑x 𝜙

𝑖 (x, 𝑡)) (∑x′ 𝜙𝑖 (x′, 0)) |0⟩√
𝑚𝜋𝑉𝑥𝑒

−𝑁𝑇𝑚𝜋/4
(
sinh((𝑁𝑇/2 − 𝑡 − 1/2)𝑚𝜋) − sinh((𝑁𝑇/2 − 𝑡 + 1/2)𝑚𝜋)

) .
We got the cleanest results by using this equation to solve for

√︁
⟨0| (∑x 𝜙

𝑖 (x, 𝑡)) (∑x′ 𝜙𝑖 (x′, 0)) |0⟩
and combining it with our earlier equation for 𝐹𝜋 .
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Figure 1: The autocorrelation of pion mass jackknife samples on an 83 × 16 lattice, 𝛼 = 0.1. For each of
these simulations, 𝑚𝜋 ≈ 0.3 and 𝐹𝜋 ≈ 1.4 ± 0.1. From left to right, 𝑚𝜎 ≈ 1.0, 1.3 and 1.5 respectively.

Figure 2: The real part of the pion field at end of a trajectory versus the real part of the momentum at
the start of the trajectory, at four different sites in momentum space. For perfect harmonic evolution, the
initial momentum is in phase with the final field value: Re(Π𝑖,initial (𝑝)) = −𝑀𝜔2Re(𝜙𝑖,final (0)). This
simulation was done on an 83 × 16 lattice with 𝑚2 = −4.0, 𝜆 = 10.0, 𝛼 = 0.1. Observable values were
𝑚𝜋 ≈ 0.309 ± 0.005, 𝑚𝜎 ≈ 1.26 ± 0.02 and 𝐹𝜋 ≈ 1.43 ± 0.02

.

3. Results

We found that Fourier acceleration can be effective at reducing the autocorrelation length of
observables like the pion mass. However, it became less and less effective for larger 𝜆 (see Figure
1). As indicated in Figure 2, the assumption that each mode evolved as an independent harmonic
oscillator was approximately valid, especially for high momentum modes, but became less and less
valid as 𝜆 increased.
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4. Conclusion

We have seen the Fourier acceleration can be very beneficial for simulating the linear sigma
model with spontaneous symmetry breaking, as long as the interaction strength 𝜆 is not too large.
Unfortunately, simulating this effective field theory at a physical ratio of pion mass to pion decay
constant requires setting 𝜆 to be very large.

Since our implementation of Fourier acceleration relies on the field values at each point in
momentum space being approximately independent, it makes sense that the method breaks down
for larger 𝜆. In the limit as 𝜆 goes to infinity, the field will obey the constraint that

∑
𝑖 (𝜙𝑖 (𝑥))2

becomes a constant. Since this is a set of local constraints in position space, it becomes a set of
non-local constraints in Fourier space that force the momentum modes to be highly correlated. In
the future, we intend to explore other if our methods can be generalized for use in theories with
large 𝜆.
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