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1. Introduction

Leptonic pseudo-scalar hadronic decays have a significant impact on precisely estimated entries
of the CKM matrix and therefore are of great interest for indirect tests of the Standard Model. Since
these decays involve the QCD hadronic matrix element of the axial-vector current

⟨0|𝐴𝑎
𝜇 (𝑥) |𝜋𝑏 (𝑝)⟩ = −𝑖𝑝𝜇 𝑓𝜋 𝛿

𝑎𝑏𝑒−𝑖 𝑝𝑥 , (1)

lattice QCD is the favoured way to reliably estimate the low-energy part of the theory contribution
to these tests.

As is well-known, Wilson fermions, while having many advantages, break chiral symmetry and
need to be improved to remove its leading O(𝑎) discretisation errors. For this purpose, resorting
to the well-established Symanzik improvement programme [1], the fermion action receives an
extra term known as the Sheikholeslami-Wohlert term. Quark bilinears also need to be improved
by adding suitable extra terms. Within this programme it turns out that the improvement term
of the axial-vector current is proportional to the derivative of the pseudo-scalar density. In a
mass independent scheme, the (multiplicatively) renormalised and improved current for degenerate
quarks is of the form

(𝐴R)𝑎𝜇 (𝑥) = 𝑍A(1 + 𝑏A𝑚𝑞) (𝐴I)𝑎𝜇 (𝑥) = 𝑍A(1 + 𝑏A𝑚𝑞)
[
𝐴𝑎
𝜇 (𝑥) + 𝑐A𝜕𝜇𝑃

𝑎 (𝑥)
]

(2)

with the axial-vector current and pseudo-scalar density being defined as

𝐴𝑎
𝜇 (𝑥) = 𝜓̄ (𝑥) 𝛾𝜇𝛾5

𝜆𝑎

2
𝜓 (𝑥) and 𝑃𝑎 = 𝜓̄ (𝑥) 𝛾5

𝜆𝑎

2
𝜓 (𝑥) . (3)

In practice, for a non-perturbative determination of 𝑐A and 𝑍A one works in the chiral limit of
vanishing quark masses where the 𝑏A-term vanishes.

Here we report on our efforts to improve and renormalise the axial-vector current for three-
flavour lattice QCD with stabilised Wilson fermions (SWF) [2]. For this computation we employ
ensembles with fairly large volumes (𝐿 ≈ 3 fm), Schrödinger functional boundary conditions and
lattice constants in a range between 𝑎 = 0.12 fm (𝛽 = 3.685) and 𝑎 = 0.055 fm (𝛽 = 4.10) in the
chiral limit as well as at the symmetric point of fully degenerate sea and valence quark masses. Since
SWF provide a new O(𝑎) discretisation of QCD, their improvement coefficients and renormalisation
constants differ from the known 𝑁f = 3 values (see e.g. [3–6]) for ordinary Wilson-Clover fermions
with the same, tree-level Symanzik-improved gauge action.

2. Stabilised Wilson formulation

Numerical simulations with the Wilson-Clover Dirac operator

𝐷W =
1
2

{
𝛾𝜇

(
∇∗
𝜇 + ∇𝜇

)
− ∇∗

𝜇∇𝜇

}
+ 𝑐sw

𝑖

4
𝜎𝜇𝜈𝐹𝜇𝜈 + 𝑚0 (4)

require stabilising measures as proposed in [2]. Based on the observation that the clover term in
𝐷W hinders stable inversion of the Dirac matrix, an alternative form of the Dirac operator was
introduced, in which the on-site terms are exponentiated, i.e.

𝑀0 + 𝑐sw
𝑖

4
𝜎𝜇𝜈𝐹𝜇𝜈 → 𝑀0 exp

(
𝑐sw
𝑀0

𝑖

4
𝜎𝜇𝜈𝐹𝜇𝜈

)
, (5)
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with 𝑀0 = 𝑚0 + 4. The exponential ensures an intrinsic bound from below in this term. As a
consequence, the Dirac operator does receive fewer near-zero eigenvalues, stabilising the calculation.
This approach was originally developed for master-field simulations [2], but it turns out to also be
beneficial for light quarks, coarse gauge fields and large lattices [7]. This is the situation we are
focussing on.

While the Sheikholeslami-Wohlert coefficient 𝑐sw for the new action has already been deter-
mined for a range of couplings [2, 7], the improvement coefficients for quark-bilinears such as the
axial-vector current are yet to be computed.

3. Improvement of the axial-vector current

Along the lines of [4, 8], using the Schrödinger functional framework, one can derive an
expression for the coefficient 𝑐A. To do so, we introduce the correlation functions

𝑓A(𝑥0;𝜔) = − 𝑎3

3𝐿6

∑︁
®𝑥
⟨𝐴𝑎

0 (𝑥)𝑂
𝑎 (𝜔)⟩ and 𝑓P(𝑥0;𝜔) = − 𝑎3

3𝐿6

∑︁
®𝑥
⟨𝑃𝑎 (𝑥)𝑂𝑎 (𝜔)⟩ (6)

with the boundary source operator at 𝑥0 = 0 being defined as

𝑂𝑒 (𝜔) = 𝑎6
∑︁
®𝑦,®𝑧

𝜁 (®𝑦)𝛾5
𝜆𝑒

2
𝜔(®𝑦 − ®𝑧)𝜁 (®𝑧) , (7)

where 𝜁 is the boundary quark field. Similar correlation functions can also be introduced with
sources at 𝑥0 = 𝑇 . These are built from boundary operators 𝑂′ 𝑓 (𝜔) and complementary boundary
quark fields 𝜁 ′. In this context, 𝜔 denotes an arbitrary spatial structure on the boundary that we
will call wavefunction. The first step in our analysis is to find suitable wavefunctions such that the
ground and first excited state can be readily extracted from the correlators. These are approximated
as in [4, 8] by constructing linear combinations of basis wavefunctions. Here we consider a set of
five functions of the form

𝜔b1 = e−
𝑟
𝑎0 , 𝜔b2 = 𝑟 e−

𝑟
𝑎0 , 𝜔b3 = e−

𝑟
2𝑎0 , 𝜔b4 = const , 𝜔b5 = 𝑟2 e−

𝑟
𝑎0 , (8)

which resemble those of the hydrogen atom, with 𝑟 = | ®𝑥 − ®𝑦 | and 𝑎0 parametrising the spatial extent
of the function. To find a well-suited linear combination, the boundary-to-boundary correlator,

𝐹1(𝜔b𝑖 , 𝜔b𝑗) = − 1
3𝐿6 ⟨𝑂

′𝑎 (𝜔b𝑗)𝑂𝑎 (𝜔b𝑖)⟩ , (9)

which for our purposes can be viewed as a 5×5-matrix in wavefunction space, is evaluated. We can
pick any subset of indices as a submatrix1 and calculate its eigenvectors, sorted by eigenvalue. The
„standard“ choice that was previously used in refs. [4, 8] can be regained by setting 𝑖, 𝑗 ∈ {1, 2, 3}.
In our setup it turned out that with this choice 𝑐A inherits some ambiguity that may be avoided by
other linear combinations. Hence we also explored the submatrix with 𝑖, 𝑗 ∈ {1, 2, 4}. Exploiting
the overlap information of the basis wavefunctions to approximately prepare the ground and first

1These need to be at least 3×3-submatrices for the eigenvectors to be fully independent of each other.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
8
7

On improvement of the axial-vector current with stabilised Wilson fermions J. T. Kuhlmann

excited state then amounts to projecting the correlators 𝑓A and 𝑓P with given basis wavefunctions
onto the eigenvectors belonging to the largest two eigenvalues.

The improvement coefficient 𝑐A is determined in the following way: The starting point is the
PCAC relation

𝜕𝜇⟨𝐴𝑎
𝜇 (𝑥)𝑂𝑎⟩ = 2𝑚PCAC ⟨𝑃𝑎 (𝑥)𝑂𝑎⟩ , (10)

which follows from an invariance under chiral rotation and holds as an operator identity in the
continuum theory. Therefore, all effects that break it on the lattice must stem from the discretisation.
Requiring the identity to be satisfied up to O(𝑎2) cut-off effects amounts to inserting the improved
current from eq. (2) into this relation and thus yields for the O(𝑎) improved PCAC quark mass

𝑎𝑚PCAC ≡
𝑎 𝜕𝜇⟨(𝐴I)𝑎𝜇 (𝑥)𝑂𝑎⟩

2 ⟨𝑃𝑎 (𝑥)𝑂𝑎⟩ + O(𝑎2) , (11)

provided 𝑐A is fixed non-perturbatively. As detailed in the previous works, it can be rewritten in
terms of the Schrödinger functional correlation functions from above as

𝑎 𝑚PCAC(𝑥0;𝜔𝑖) =
𝑎 𝜕0 𝑓A(𝑥0;𝜔𝑖) + 𝑐A 𝑎2 𝜕2

0 𝑓P(𝑥0;𝜔𝑖)
2 𝑓P(𝑥0;𝜔𝑖) . (12)

Decomposing the PCAC mass as

𝑚PCAC(𝑥0;𝜔𝑖) = 𝑟 (𝑥0;𝜔𝑖) + 𝑐A 𝑎 𝑠(𝑥0;𝜔𝑖) , (13)

with

𝑟 (𝑥0;𝜔𝑖) = 𝜕0 𝑓A(𝑥0;𝜔𝑖)
2 𝑓P(𝑥0;𝜔𝑖) and 𝑠(𝑥0;𝜔𝑖) =

𝜕2
0 𝑓P(𝑥0;𝜔𝑖)

2 𝑓P(𝑥0;𝜔𝑖) , (14)

and assuming that it holds for the two lowest states in the pseudo-scalar channel (isolated as
described above) labelled by indices 𝑖 = 0, 1, we can solve for 𝑐A:

𝑐A(𝑥0) = − 𝑟 (𝑥0;𝜔1) − 𝑟 (𝑥0;𝜔0)
𝑎 (𝑠(𝑥0;𝜔1) − 𝑠(𝑥0;𝜔0))

= − Δ𝑟 (𝑥0)
𝑎 Δ𝑠(𝑥0)

. (15)

Note that, as observed in [4, 8], the precision of the estimate for 𝑐A is dominated by the statistical
error of 𝑎Δ𝑠. Therefore an examination of the 𝑥0-dependence of the functions Δ𝑟 and 𝑎Δ𝑠 may be
helpful. As one expects 𝑐A(𝑥0) in eq. (15) to develop a plateau over a certain range of 𝑥0, a suitable
plateau range needs to be identified, in which the noise in Δ𝑟 and 𝑎Δ𝑠 is small.

4. Renormalisation

For the calculation of the renormalisation factor 𝑍A we adopt the strategy explained in [5, 9].
We only recall here that the calculation involves a Ward identity originating from an infinitesimal
chiral rotation of the fields entering the expectation value

⟨𝐴𝑏
𝜈 (𝑦)𝑂ext⟩ =

∫
D[𝜓̄, 𝜓,𝑈]𝐴𝑏

𝜈 (𝑦)𝑂ext𝑒
−𝑆 , (16)

where we include the current into the chiral rotation and obtain from the variational principle

0 = ⟨𝛿𝐴𝑏
𝜈 (𝑦)𝑂ext⟩ − ⟨𝛿𝑆𝐴𝑏

𝜈 (𝑦)𝑂ext⟩ . (17)
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Figure 1: The six non-vanishing Wick contractions contributing to the 4-point functions 𝐹XY.

For 𝑂ext which we set
𝑂ext = 𝑂

𝑒 𝑓
ext = 𝑂𝑒 (𝑂′) 𝑓 , (18)

where 𝑂𝑒 and (𝑂′) 𝑓 are the pseudo-scalar boundary sources as defined in eq. (7).
Omitting all intermediate steps, translating the expressions into their lattice counterparts and

formulating them in terms of renormalised, improved Schrödinger functional correlators, one can
finally isolate 𝑍A as

𝑍A =

√︄
𝐹1

𝐹I
AA(𝑥0, 𝑦0) − 2𝑚PCAC𝐹̃

I
PA(𝑥0, 𝑦0)

, (19)

where 𝐹I
AA is defined as

𝐹I
AA = 𝐹AA(𝑥0, 𝑦0) + 𝑎𝑐A

(
𝜕𝑥0𝐹PA(𝑥0, 𝑦0) + 𝜕𝑦0𝐹AP(𝑥0, 𝑦0)

)
+ 𝑎2𝑐2

A
(
𝜕𝑥0𝜕𝑦0𝐹PP(𝑥0, 𝑦0)

)
(20)

and 𝐹̃I
PA as

𝐹̃I
PA(𝑥0, 𝑦0) = 𝐹̃PA(𝑥0, 𝑦0) + 𝑐A𝜕𝑦0 𝐹̃PP(𝑥0, 𝑦0) , (21)

with
𝐹XY(𝑥0, 𝑦0) ≡ −2𝑎6

∑︁
®𝑥, ®𝑦

⟨𝑋1(𝑥)𝑌2(𝑦)𝑂2(𝑂′)1⟩ (22)

and

𝐹̃XY(𝑥0, 𝑦0) ≡ 𝑎

𝑦0∑︁
𝑧0=𝑥0

𝑤(𝑧0)𝐹XY(𝑧0, 𝑦0) with 𝑤(𝑧0) =
{

1
2 if 𝑧0 = 𝑥0 or 𝑧0 = 𝑦0

1 else
. (23)

Each of the 4-point functions receives contributions from six different diagrams shown in fig. 1.
Two of these are disconnected and can be evaluated as a product of two separate 2-point functions.

Additionally, in this calculation we consider the vector current which enters the following Ward
identity: ∫

d3𝑦⟨𝑉𝑐
0 (𝑦)𝑂

𝑒 (𝑂′) 𝑓 ⟩ = 𝑖 𝑓 𝑐𝑒𝑔 ⟨𝑂𝑔 (𝑂′) 𝑓 ⟩ , (24)

where𝑂𝑒 and (𝑂′) 𝑓 are defined as before. From this, a simple expression for 𝑍V can be derived [10]:

𝑍V =
𝐹1
𝑓V

+ O(𝑎2) , (25)

5
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Table 1: Ensembles with Schrödinger functional boundary conditions used in this project. The mass point
indicates to which line of constant physics the ensemble belongs.

𝑇 𝐿3 𝛽 𝜅𝑢/𝑑/𝑠 𝑎 [fm] mass point # of configs

24 163 3.80 0.1392500 0.095 chir. 2875
24 243 3.80 0.1392500 0.095 chir. 2523
32 323 3.80 0.1392500 0.095 chir. 1167
24 243 3.685 0.1394400 0.120 symm. 540
32 323 3.80 0.1389630 0.095 symm. 956
56 563 4.10 0.1380000 0.055 symm. 33

0 8 16
x0/a

0.10

0.08

0.06

0.04

0.02

0.00

c A

plateau of cA

cA

0 14 28
x0/a

0.10

0.08

0.06

0.04

0.02

0.00

c A

plateau of cA

cA

Figure 2: Preliminary results for 𝑐A at 𝛽 = 3.80 (𝑎 ≈ 0.094 fm, left) at the chiral point and 𝛽 = 4.10
(𝑎 ≈ 0.055 fm, right) at the symmetric point with the standard projection.

in which 𝑓V is
𝑓V(𝑥0) = 𝑖

∑︁
𝑥

𝜀𝑎𝑏𝑐⟨𝑂′𝑎𝑉𝑏
0 (𝑥0)𝑂𝑐⟩ . (26)

5. Ensembles and error analysis

After having discussed the theoretical aspects, we introduce the ensembles used in the numerical
computations so far. To make our results on 𝑐A, 𝑍A and 𝑍V useful for other groups, the range of
ensembles covered are at the same lattice spacings 𝑎 as those generated by OpenLat2 [7], only
differing in boundary conditions. The ensembles used here are listed in tab. 1. Our error analysis is
done employing the Γ-method [11] using the python-implementation pyerrors described in [12].
As stated in the introduction, we are interested in two lines of constant physics: at the chiral point
of (almost) vanishing quark masses and at the symmetric point of fully degenerate massive quark
flavours.

6. Results

In the analysis for 𝑐A we have seen that the quality and longevity of the plateau may be
problematic in the large-volume setup adopted here. For the preliminary results we set the plateau

2see also: https://openlat1.gitlab.io/
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Table 2: Preliminary estimates of renormalisation constants for the axial-vector channel. The labels f, c and
m refer to full, connected and massive definitions of 𝑍A; see [5] for details.

Ensemble 𝑍 f
A 𝑍

f,m
A 𝑍c

A 𝑍
c,m
A

24×163, 𝛽 = 3.80, chir. 0.7638(76) 0.7585(80) 0.753(20) 0.773(21)
24×243, 𝛽 = 3.80, chir. 0.779(15) 0.741(13) 0.7631(50) 0.7782(39)

region as 𝑥0 ∈ [𝑇/4 − 2, 𝑇/4 + 2], which works out fine in most cases, as can be seen for the two
representative examples in fig. 2.

As mentioned above, it has also been seen
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Figure 3: Example for the possible projections on the
324 lattice at 𝛽 = 3.80 at the chiral point. Data points
shown here are the plateau-values of 𝑥0 ∈ [𝑇/4 −
2, 𝑇/4 + 2]. The boxes indicate the spread of 𝑐A in the
plateau region. The standard projection is marked in
red, while the new, preferred projection is marked in
green.

in our tests that the standard projection (used
in [4, 8]) is not always optimal. An alternative
was found by scanning all possible projections
which can be built after diagonalising 𝐹1 on
various (subsets of) basis wavefunctions. The
outcome of these scans can be inferred from
fig. 3. While the standard projection shown
in red, assessed in isolation, yields a legitimate
value, the majority of the other projections are
placed systematically around a different value.
This could hint at an overestimation of 𝑐A (in
magnitude) when using the standard projection.
However, the new, preferred projection exhibits
smaller errors and yields results consistent with
most other projections, thus appearing to be
less affected by systematics due to the choice
of the wavefunction basis. The spread of 𝑐A

in the plateau region (shown in fig. 3 by the vertical extent of the boxes) is also smaller for this
projection, which endorses the better quality of the associated plateau.

In fig. 4 a preliminary interpolation in 𝑔2
0 of the results on the symmetric point ensembles is

displayed. So far, the ensembles studied do not yet allow for an analogous interpolation in the chiral
case. However, we can see that in comparison with the results for ordinary Wilson-Clover fermions
[4] the estimates for 𝑐A appear to be smaller in magnitude which may hint at smaller cut-off effects
for stabilised Wilson fermions at the same lattice spacing. Of course, whether this is a general
feature of this discretisation still needs to be confirmed in phenomenological applications.

For the renormalisation constants, preliminary results are listed in tables. 2 and 3. These
indicate that the estimates obtained are within the same ballpark as the ones for ordinary Wilson-
Clover fermions in 𝑁f = 3 [5, 13]. As the 4-point functions used here are prone to large statistical
fluctuations, it seems more promising to determine 𝑍A in the chirally rotated Schrödinger functional
(𝜒SF) scheme [6, 14], because in this framework only 2-point functions are involved.

7
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Figure 4: Preliminary 𝑔2
0-dependence of 𝑐A for ensembles at the symmetric point with 𝛽 = 3.685, 𝛽 = 3.80,

𝛽 = 4.10 with the standard (left) and the preferred (right) projection. In orange, the point for the chiral case
at 𝛽 = 3.80 is shown. The red point gives 𝑁f = 3 result for traditional Wilson-Clover fermions from [4].
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Figure 5: Example for the calculation of
𝑍V on the chiral ensemble at 𝛽 = 3.80
(𝑎 ≈ 0.094 fm).

Table 3: Preliminary estimates of renormali-
sation constants for the vector channel.

Ensemble 𝑍V

24×163, 𝛽 = 3.80, chir. 0.729141(94)
24×243, 𝛽 = 3.80, chir. 0.728716(56)
32×323, 𝛽 = 3.80, chir. 0.728546(81)
24×243, 𝛽 = 3.685, symm. 0.71209(13)
32×323, 𝛽 = 3.80, symm. 0.738044(53)
56×563, 𝛽 = 4.10, symm. 0.777900(17)

The values for 𝑍V in tab. 3 were extracted from plateau ranges like the one shown in fig. 5.
Due to the simple expression for 𝑍V in eq. (25), which only consists of a ratio of two correlation
functions and yields a good plateau quality in most cases, it can be determined to high precision.
In the present, preliminary results, plateaus have been taken from 𝑥0 = 𝑇/4 up to 𝑥0 = 3𝑇/4.

7. Conclusions and outlook

We have seen that the Ward identity method in combination with Schrödinger functional
boundary conditions can be readily implemented to determine 𝑐A for the stabilised Wilson-Clover
fermions. As we work in larger volumes, some adaptions in the choice of the plateau range and
wavefunctions turn out to be advantageous to reach the desired precision goal. To finally arrive at a
proper interpolation over the whole range of interesting lattice spacings, measurements on further
ensembles are still to be added.

When it comes to renormalisation, a precise extraction of 𝑍V for the vector current is straight-
forward, while the achievable accuracy for 𝑍A remains to be seen. A promising route to enhance
the final precision of 𝑍A is to pursue the computational strategy within the 𝜒SF advocated and
successfully applied in [6, 14].
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