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Lattice scales defined using gradient flow are typically very precise, while also easy to calculate.
However, different definitions of flows and operators can differ significantly, suggesting possible
systematical effects. Using a subset of RBC-UKQCD’s 2+1 flavor domain wall fermion and
Iwasaki gauge action ensembles, we explore differences between

√
𝑡0 and 𝑤0 gradient flow scales,

compare the impact of different operators to define the energy density, and study the effect of using
tree-level improvement for the gradient flow. We find that for this set of gauge field ensembles
Zeuthen flow with Symanzik operators has the most consistent approach to the continuum limit and
exhibit very small cutoff corrections. Tree-level improvement, traditionally used in step-scaling
studies, significantly reduces the spread between different operators, but does not lead to an overall
improvement when it comes to reducing cutoff effects for gradient flow scales

√
𝑡0 or 𝑤0.
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ensemble 𝛽 𝐿/𝑎 𝑇/𝑎 𝑎𝑚ℓ 𝑎𝑚sea
𝑠 𝑎𝑚res 𝑁cfg

C1 2.13 24 64 0.005 0.040 0.003154(15) 1636
C2 2.13 24 64 0.010 0.040 0.003154(15) 1419

M1 2.25 32 64 0.004 0.030 0.0006697(34) 628
M2 2.25 32 64 0.006 0.030 0.0006697(34) 889
M3 2.25 32 64 0.008 0.030 0.0006697(34) 544

F1 2.31 48 96 0.002144 0.02144 0.0009679(21) 98

X1 2.37 32 64 0.0047 0.0186 0.0006296(58) 119

Table 1: RBC-UKQCD’s 2+1 flavor Shamir domain-wall fermion and Iwasaki gauge field ensembles [5–9].

1. Introduction

All lattice quantum chromodynamics (QCD) calculations are subject to cutoff effects. To obtain
phenomenologically meaningful results, one needs to take the continuum limit of any physical
quantity predicted at finite lattice spacing. This means we need to perform an extrapolation to the
renormalization group (RG) fixed point where the lattice spacing 𝑎 → 0. Precise determination of
lattice scales is therefore essential for such continuum limit extrapolation. Unfortunately the lattice
scale itself also exhibits cutoff effects. Like all physical observables, lattice scales are subject to
cutoff effects due to the lattice action. In addition, operators used to determine physical observables
can also contribute cutoff effects. The gradient flow lattice scales

√
𝑡0 [1] and 𝑤0 [2] are increasingly

popular in determining the lattice spacing as they are easy to calculate and precise. Both of these
approaches rely on the gradient flow transformation [3, 4], setting the value of the gradient flow
renormalized coupling or its derivative to a given value at the corresponding dimensionless lattice
values 𝑡0/𝑎2 and 𝑤0/𝑎. Both

√
𝑡0/𝑎 and 𝑤0/𝑎 can exhibit large cutoff effects that originate not only

from the lattice action, but also from the flow scheme and the operator used in determining the
renormalized coupling. In this paper we study discretization effects of the gradient flow scales

√
𝑡0

and 𝑤0 and give a practical description of a scale least affected by cutoff effects. We use a subset of
RBC-UKQCD’s 2+1 flavor domain-wall fermion (DWF) and Iwasaki gauge field ensembles listed
in Table 1 [5–9]. Specifically we use the set of DWF ensembles generated using the Shamir kernel
[10–12] and list their key parameters: bare gauge coupling 𝛽, spatial and temporal extent, 𝐿/𝑎
and 𝑇/𝑎, input quark mass of the two degenerate light flavors, 𝑎𝑚ℓ , and input quark mass of the
strange quark, 𝑎𝑚𝑠, as well as the number of used configurations. In the following we refer to
these ensembles using names indicating their lattice spacing which is related to the inverse of the
bare gauge coupling 𝛽. Hence we will use coarse (C1, C2), medium (M1, M2, M3), fine (F1),
and extra fine (X1), where larger integers indicate heavier light quark masses. On these gauge
field configurations we perform Wilson (W) and Zeuthen (Z) gradient flow [13, 14] measurements,
and determine renormalized couplings using three different operators: clover (C), Wilson (W),
and Symanzik (S). In addition we analyze renormalized couplings with and without tree-level
normalization (tln) corrections [15].
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2. The 𝑡0 and 𝑤0 scales

The scale 𝑡0 was introduced in Ref. [1] as the lattice gradient flow time 𝑡0/𝑎2 where 𝑡2⟨𝐸⟩ = 0.3.
⟨𝐸⟩ is the energy density at flow time 𝑡0. Analogously 𝑤0 is defined as the square root of the flow
time where 𝑡 𝑑𝑡

2 ⟨𝐸 ⟩
𝑑𝑡

= 𝑊 (𝑡/𝑎2) = 0.3 [2]. These definitions are appropriate to define a lattice scale
because the quantity 𝑡2⟨𝐸⟩ has no canonical or anomalous dimension and therefore can be considered
as a running renormalized coupling [16, 17]. With the normalization N = 128𝜋2/3(𝑁2

𝑐 − 1) the
gradient flow coupling 𝑔2

𝐺𝐹
= N 𝑡2⟨𝐸⟩ matches the MS coupling at tree-level.

Restating the definition of the lattice scales, one defines the 𝑡0 scale as the lattice gradient flow
time 𝑡0/𝑎2 where the renormalized coupling 𝑔2

𝐺𝐹
(𝑡0) = 0.3N and the 𝑤0 scale as the lattice flow

time
√
𝑡/𝑎 where the renormalization group 𝛽 function is 𝛽

(
𝑔2
𝐺𝐹

(𝑡)
)
= 𝑡

𝑑𝑔2
𝐺𝐹

𝑑𝑡
= 0.3N .

2.1 Tree-level Normalization

The lattice action induces O(𝑎𝑛) cutoff effects at tree-level and, moreover, loop corrections
enter ∝ 𝑔2log(𝑎). Also the renormalized coupling 𝑔2

𝐺𝐹
has both tree-level and quantum loop cutoff

corrections. The gradient flow, on the other hand, is a classical operation on the background gauge
field configurations1. Following the Symanzik improvement program it is possible to remove all
O(𝑎2) terms from the flow and operator by choosing Zeuthen flow and Symanzik improved operator
to estimate the energy density ⟨𝐸⟩. One can even go further. Tree-level cutoff effects for a given
action/flow/operator combination can be expressed as a 4-dimensional integral, or, in finite volume,
as a 4-dimensional sum. By redefining the gradient flow coupling as 𝑔2

𝐺𝐹
= N 𝑡2⟨𝐸 (𝑡)⟩/𝐶 (𝑡, 𝐿, 𝑇),

where 𝐶 (𝑡, 𝐿, 𝑇) is determined analytically according to Eq. (3.15) of Ref. [15], we obtain a tree-
level improved (tln) scale. Using this method, a notable improvement for the determination of the
step-scaling 𝛽 function for SU(3) with 𝑁 𝑓 = 4, 6, 8, 10, 12 at sufficiently weak coupling is achieved
in [20–24]. We repeated the analytical calculation of𝐶 (𝑡, 𝐿, 𝑇) for the case of Iwasaki gauge action,
Zeuthen or Wilson gradient flow and Wilson plaquette, Symanzik, or clover operator on 243 × 64,
323 × 64, and 483 × 96 volumes. As a shorthand to refer to the different combinations, we use the
convention [action][flow][operator], with the prefix 𝑛 to denote tln improvement.

Tree-level normalization does not mean all cutoff effects introduced by the lattice action and the
GF operator are removed. Step scaling function calculations that compare different flows, operators,
with and without tree-level normalization show that perturbatively improved combinations do not
always lead to smaller cutoff effects at strong coupling [23].

3. Analysis

3.1 Determination of
√
𝑡0 and 𝑤0

The scale 𝑡0 is defined as the lattice scale 𝑡0/𝑎2 where the dimensionless quantity 𝑔2
𝐺𝐹

(𝑡) =

N 𝑡2⟨𝐸⟩ = 0.3N [1]. The choice of the constant is arbitrary, and in the following we will consider

1In Wilsonian renormalization group language the gradient flow defines a renormalization group transformation. In
QCD, non-pathological RG transformations have a fixed point on the 𝑔2

0 = 0 critical surface. An optimally chosen RG
transformation has a fixed point and a corresponding renormalized trajectory that are close to the bare lattice action, thus
reducing cutoff effects in 𝑔2

𝐺𝐹
[18, 19]
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Figure 1: Determination of the Wilson flow 𝑡 scales (top) and 𝑤 scales (bottom) on the M1 ensemble. Plots
on the left show the determination without tln, plots on the right with tln. In addition to the standard 𝑡0 and
𝑤0 scales we also consider the 𝑡2 and 𝑤2 scales that are defined at different values of 𝑡2⟨𝐸⟩ and 𝑊 (𝑡/𝑎2).
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Figure 2: Comparison of
√
𝑡0/𝑎 values determined for different operators and flows on the M1 ensemble. We

use the short-hand [action][flow][operator] indicated by the corresponding first letter to refer to the different
combination and prefix a ‘n’ when using tln.

both 𝑡0 and a new scale 𝑡2 defined where 𝑔2
𝐺𝐹

(𝑡) = 0.4N . Analogously 𝑤0 is defined as the square
root of the flow time where N 𝑡

𝑑𝑡2 ⟨𝐸 ⟩
𝑑𝑡

= 𝑊 (𝑡/𝑎2)N = 0.3N [2]. In addition we consider the scale
𝑤2 defined by 𝑊 (𝑡/𝑎2) = 0.2.

Figure 1 illustrates the determination of the 𝑡 and𝑤 scales with Wilson flow on the M1 ensemble.
The 𝑡 scales without tln correction show strong dependence on the choice of the operator, whereas
tln improvement removes most operator dependence. The 𝑤 scales show overall better consistency.
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Figure 3: The plot on the left shows the ratio
√︁
𝑡0 /𝑡2 vs. 𝑎2 /𝑡0 using Wilson flow and the clover operator.

The dependence on the light sea-quark mass is clearly resolved. We therefore perform a chiral extrapolation
in

√
𝑡0 (𝑚res + 𝑚ℓ) as shown on the right. The extrapolations of the fine and extra fine ensembles is guided

using the slopes of the extrapolations of the coarse and the medium ensembles.

3.2 Identifying cut-off effects

In Fig. 2 we compare
√
𝑡0/𝑎 predicted by both Wilson and Zeuthen flow using all three operators

with and without tln. This plot on its own is insufficient to deduce which flow/operator combination
has the smallest cutoff effects because a priori the lattice spacing of an ensemble is not known.
However, the more than 10% difference between the predicted scales should serve as a warning.
This level of uncertainty could make tuning of, e.g. quark masses, troublesome. To get a handle on
the cutoff effects, we form ratios of scales, e.g.

√︁
𝑡0/𝑡2.2 With a given flow and operator combination,

𝑡0 and 𝑡2 have similar cutoff corrections, though 𝑡2 should have smaller corrections as it is defined
at a larger flow time. Thus the ratio

√︁
𝑡0/𝑡2 shows the cutoff effects of the 𝑡0 scale relative to 𝑡2.

We investigate it as a function of 𝑎2/𝑡0, assuming that cutoff corrections on 𝑎2/𝑡0 have only a small
effect.

The left panel of Figure 3 shows this ratio obtained with Wilson flow and clover operator, with
and without tln, for all investigated ensembles. Symbols with the same color refer to ensembles
with the same bare gauge coupling but different masses. This plot demonstrates that the mass
dependence is not negligible. If we want to identify cutoff effects, we first need to extrapolate our
data to the chiral limit. The expected mass dependence of the 𝑡0 scale is linear in 𝑎𝑚. That is indeed
satisfied by our data, as can be observed in the right panel of Fig. 3 where we extrapolate the ratio√︁
𝑡0/𝑡2 linearly in

√
𝑡0𝑚 𝑓 =

√
𝑡0(𝑚res + 𝑚ℓ) for the C and M ensembles. For the F and X ensemble,

we only have data at one value of the light quark mass 𝑚ℓ . Observing that the slopes of the C and
M ensembles are similar, we take the slopes of the C and M ensembles to predict the ratio

√︁
𝑡0/𝑡2 in

the chiral limit and use the differences in the slopes to inflate the uncertainty. At this point we have
chiral limit values for our scales for each of the four different bare gauge couplings.

Finally we can explore the continuum limit by examining the ratios in the chiral limit. In the
top panels of Figure 4 we study continuum limit extrapolations for

√︁
𝑡0/𝑡2 showing data based on

Wilson flow on the left and Zeuthen flow on the right. In all cases we observe that the data points

2A similar idea was presented by Alberto Ramos at this conference [25].
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Figure 4: Continuum extrapolation of the chirally extrapolated data for different ratios using chiral extrap-
olations with 𝑡 or 𝑤-scaled 𝑥-axis. The coarse ensembles are not included in the extrapolation fits since our
simple, “linear-in-𝑎2” fit ansatz is insufficient to describe them. Higher order corrections are likely needed
for these ensembles.

corresponding to the coarse ensembles are not described by the leading order O(𝑎2) form. The
right most data points are therefore not included in the continuum fit indicated by the solid lines
with shaded error band. To visualize the tension with the coarsest data points, we continue the fit
lines to the right using dotted lines. Different flow/operator combinations have different approaches
to the continuum but should have the same continuum limit value. Also the left most data point
corresponding to the extra fine ensemble seems to be slightly off. That value may suffer from the fact
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that the X1 ensemble has poor statistical properties (e.g. almost frozen tunneling of the topological
charge) and, moreover, due to its large light input quark mass, requires a long chiral extrapolation.
Looking at the 𝑝-values to study the goodness of our continuum extrapolation fits, we observe
𝑝-values ≳ 20% for fitting data without tln but 𝑝-values drop to around 3 − 4% for tln improved
data. Also our other ratios exhibit significantly lower 𝑝-values for continuum extrapolations of tln
improved data compared to fits of unimproved data. In all cases we find that the data point derived
from the extra fine ensemble has an increased contribution to the total 𝜒2 raising further concerns
about X1.

The ratio
√︁
𝑡0/𝑡2 shows for both flows less than 2% cutoff effects on the X, F and M ensembles,

but up to 5% on the coarse ensemble. Interestingly the combination of Zeuthen flow with Symanzik
operator exhibits practically no lattice artifacts on the three finer ensembles. We can interpret this
as the best combination to predict the lattice scale with Iwasaki gauge action. Our continuum
limit prediction using the IZS combination is

√︁
𝑡0/𝑡2 = 0.8187(18), which is consistent with

determinations based on other combinations.
The 𝑤 scales show a similar behavior, as is illustrated in the middle panels of Fig. 4, and we

again observe that fits to tln improved data have lower 𝑝-values (4 − 5%) compared to fitting data
without tln (𝑝-values ≳ 50%). The deviation between the different combinations is smaller than for
the 𝑡0 scale, and the “optimal” combination now appears to be Zeuthen flow with clover operator.3
The continuum limit of the ratio

√
𝑡0/𝑤0 has been predicted by several lattice calculations. We

demonstrate its cutoff corrections in the bottom panels of Fig. 4, where we again observe noticeably
lower 𝑝 values when fitting tln improved data compared to fitting the data without tln.

We can gain further understanding of the cutoff effects by focusing at the tree-level improved
data gathered in Fig. 5. For all three ratios, we observe close agreement between the tln improved
data, independent of the flow and operator considered. However, the tln combinations show
significant cutoff effects of approximately 1− 2%. This is contrary to our expectations, because we
expected that removing tree-level cutoff effects will improve the overall scaling behavior. Apparently
quantum loop effects at strong coupling interfere and introduce significant lattice artifacts.

4. Conclusions and Outlook

In this paper we consider the important issue of lattice scale setting. Although gradient flow
scales can be determined with high statistical precision, they may carry significant cutoff effects.
It is essential to identify the most reliable gradient flow-operator combination for a given lattice
action to improve the accuracy e.g. of tuning parameters for lattice simulations.

We analyze existing configurations generated by the RBC-UKQCD collaboration using 2+1
dynamical flavors of Shamir DWF and Iwasaki gauge action. We analyze these ensembles using
both Wilson and Zeuthen flow and consider Wilson, clover and Symanzik operators with and
without tree-level normalization. Comparing ratios of scales to estimate cutoff effects, we find that
𝑡0 determined using Zeuthen flow with Symanzik operator exhibits a very consistent continuum
limit and hence carries very little dependence on the lattice spacing. Similarly, the 𝑤0 scale is best
identified with Zeuthen flow and clover operator. In contrast, the 𝑡0 scale determined using Wilson

3The cutoff effects using 𝑤 scale appear to be the opposite of the 𝑡 scale. This only reflects the definition of 𝑡2 > 𝑡0,
whereas 𝑤0 > 𝑤2.
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Figure 5: Continuum extrapolations of tln improved ratios of 𝑡 and 𝑤 scales. Applying tln largely removes
differences observed for different operators and also the differences between Wilson and Zeuthen flow are
reduced. However, the overall cutoff effects are not reduced by tln corrections.
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Figure 6: The left panel shows a comparison of continuum limit values for
√
𝑡0/𝑤0 obtained for different

flows/operators in the chiral limit. In addition we show in the small panel on the right ratios at the physical
point derived using FLAG 2021 averages [26] for 2+1 flavor simulations as well as results by RBC-UKQCD
[7], which are based on a subset of the Shamir DWF ensembles used here but include in addition e.g. the
Möbius DWF ensembles at the physical point (C0, M0).

flow and clover operator, a popular choice with Wilson gauge action, could have sizable cutoff
effects on ensembles with lattice spacing 𝑎 ≈ 0.08 fm (medium ensembles).

Frequently the ratio
√
𝑡0/𝑤0 is used to estimate lattice artifacts of gradient flow scales deter-

mined with different lattice actions, flows and operators. Typically this comparison is performed at
the physical point. Since we neither use external information on the lattice scale nor other quantities
to perform a “global fit”, the physical point is not accessible to us. By quoting values in the chiral
limit, we obtain systematically lower results compared to determinations at the physical point as
can be inferred from Fig. 3. We roughly estimate this effect to be of 𝑂 (0.005) i.e. our values agree
at the 1𝜎 level with ratios we obtain using the FLAG 2021 averages [26] for

√
𝑡0 and 𝑤0 or the

corresponding results from RBC-UKQCD [7].
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Nevertheless the crude chiral extrapolation and the fact that we have insufficient data at different
bare gauge coupling to better constrain the continuum limit extrapolation are obvious parts of our
analysis to be improved in the future. Repeating this exercise using RBC-UKQCD’s three physical
point ensembles (C0, M0, F0) with Möbius DWF kernel would e.g. be highly interesting.
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