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Staggered, Karsten-Wilczek (KW) and Boriçi-Creutz (BC) fermions all retain a remnant chiral
symmetry. The price to be payed is that they are doubled, and the resulting taste symmetry is
broken by cut-off effects. We measure the size of the taste symmetry violation by determining the
low-lying eigenvalues of these fermion operators in the two-dimensional Schwinger model which
admits, like QCD, a global topological charge q ∈ Z of a given gauge configuration. We find that
it matters whether the pertinent eigenmode is a would-be zero mode or a non-topological mode.
The intra-taste splittings of these fermion formulations are all found to diminish with increasing
β. Our goal is to verify standard Symanzik scaling for these taste-breaking effects.
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Intra-taste eigenvalue splittings of staggered, KW and BC fermions in 2D Stephan Dürr

1. Introduction

For lattice fermions exact chiral symmetry comes at a price. One option is to start with an
undoubled formulation, e.g. the Wilson fermion Dirac matrix DW [1], and to mitigate the effects of
additive mass renormalization and operator mixing. Another option is to stay within the category
of ultralocal chiral actions, and to live with the fact that an even number of species is encoded.

For a long time, the second category was sparsely populated. Only naive [2] and Susskind
(“staggered”) fermions [3] with 16 and 4 species, respectively, in four space-time dimensions (“4D”)
were widely known. More recently, this category has been augmented by Karsten-Wilczek [4, 5]
and Boriçi-Creutz fermions [6, 7]. The latter two actions encode only 2 species in 4D, and thus
seem attractive for simulating 2-flavor QCD in the isospin limit mren

u = mren
d

> 0.
The two species encoded by one Karsten-Wilczek matrix DKW or one Boriçi-Creutz matrix

DBC are referred to as “tastes”, to be distinguished from the standard concept of “flavor” [associated
with different fields of one action]. The reason is that taste-symmetry is broken by cut-off effects,
while flavor symmetry is exact (at finite lattice spacing a > 0). In order to simulate QCD with 2
degenerate flavors, one may thus use a single copy of DKW or DBC, but one must take the continuum
limit, since the two species mix at any a > 0 in a complicated (a-dependent) fashion.

For staggered fermions there is a long tradition of examining in detail how this taste symmetry
breaking (which depends on the specifics how tastes are identified at a > 0) disappears under a→ 0,
see e.g. the MILC paper [8] for a guide to the literature. For Karsten-Wilczek and Boriçi-Creutz
fermions we are unaware of similar practical efforts. This is whywe feel it is rewarding to take a look
at “taste symmetry restoration” (at asymptotically small lattice spacings) for these formulations.

We will examine the situation in the quenched Schwinger model [9, 10] in two space-time
dimensions (“2D”). In this case even staggered fermions are “minimally doubled”, hence featuring
2 tastes. In our view, this provides an excellent opportunity to compare three 2-species formulations
on equal footing. To avoid the need of specifying any taste identification details, we investigate the
eigenvalue splittings of these operators. In 2D eigenvalues come in pairs for all three formulations
(in 4D it would be quartets for staggered fermions [11, 12]), and our goal is to demonstrate, for
each formulation, a Symanzik-type scaling of the intra-pair splitting of the eigenvalues.

2. Schwinger model: instanton hit updates

Weuse the action density swil(x) = 1−Re(Uut(x)) = 1−cos(θ(x)) for the gauge boson, where the
plaquette variable at position x = (x1, x2) isUut(x) = U1(x)U2(x+ e1)U

†

1 (x+ e2)U
†

2 (x) = exp(iθ(x)).
Next, one defines two discretizations of the global topological charge, q(n)raw =

1
2π

∑
sin(θ(n)(x)) ∈ R

and q(n)geo =
1

2π
∑
θ(n)(x) ∈ Z, where the sum is over all sites x, and θ(n) is the plaquette angle after

n steps of stout smearing [13]. In the following we shall use n = 0, 1 or 3 steps with ρ = 0.25 fixed.
The “geometric” charge qgeo is integer-valued, while the “field-theoretic” charge follows from the
“raw” charge through a (β-dependent but finite) renormalization factor, i.e. q(n)fth = Z (n)(β) q(n)raw.

The pure gauge part of the Schwinger model can be simulated by means of a mixture of
(multi-hit) Metropolis and overrelaxation sweeps. A striking similarity of this model with pure
Yang-Mills theory is that the partition function in the continuum decays into contributions from
various topological sectors, i.e. Z =

∑
q∈Z Zq. For β > 6 the lattice theory (where Z is simply
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Fig. 1: Instanton hit acceptance ratio pinst.hit versus 1/β in a fixed physical volume (left, see Tab. 1), and
versus a/L at fixed β (right, see Tab. 2), along with linear fits. Note the different y-ranges.

connected) feels this indirectly, since Z(β) gradually consists of big “basins” (where q is reasonably
well defined) which are connected by thin “bridges” (where q is not well defined, i.e. different
discretizations tend to give rather different results). In the limit β → ∞ (or a → 0) the “bridges”
evolve into sets of measure zero in configuration space. This sounds good in the sense that q[U]
becomes well defined for any typical gauge background U in Z . But it is bad in practical terms,
since any update algorithm which evolvesU in small steps becomes stuck in a particular topological
sector, and thus non-ergodic. This phenomenon is referred to as “topological freezing”.

Fortunately, in the quenched Schwinger model the problem has been solved long ago by
“instanton hits” (originally in [14], more details are found e.g. in [15]). The idea is to propose
update steps which “tunnel through the barrier” between topological sectors, and the respective
acceptance rate is found to be large and to tend to 1 in the infinite-volume limit, see Fig. 1.

3. Schwinger model: ensemble details and topological charge distributions

In the Schwinger model the lattice spacing a is conveniently set through the inverse of the
(dimensionful) electric charge via β = 1/(ae)2. This makes it easy to define, from the beginning,
matched ensembles, that is lattices with fixed box size L in physical units. Our 24 main ensembles
are generated in this way, see Tab. 1. For each (β, L/a) combination three ensembles of 10 000
configurations each are generated. On the first ensemble the low-lying eigenvalues of DS,DKW,DBC

are evaluated without link smearing, on the second one after 1 stout step, and on the last one after
3 steps. Tab. 2 lists four extra ensembles to test for finite volume effects.

In each ensemble the plaquette is checked using the analytic result of Ref. [16]. Due to the
large acceptance ratio of the instanton-hit proposal (cf. Fig. 1), the topological charges of successive
configurations are well decorrelated. As a result, the overall topological charge distribution looks
“healthy”, regardless whether q(n)geo or q(n)fth is used, and regardless of n ∈ {0, 1, 3}. Incidentally, for
the higher β-values the two definitions of the topological charge agree on all 10’000 configurations
in a given ensemble, even in the unsmeared case (n = nstout = 0), see Fig. 2 for an illustration.
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β 3.2 5.0 7.2 12.8 20.0 28.8 51.2 80.0
L/a 16 20 24 32 40 48 64 80
nstout 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3 0,1,3
pinst.hit 0.750(2) 0.737(2) 0.729(2) 0.725(2) 0.726(2) 0.722(2) 0.721(2) 0.721(1)

Tab. 1: Overview of the ensembles used in the “cut-off effect” study, implementing constant physical volume
through (L/a)2/β = 80. For every choice of (β, L/a) three ensembles of 10 000 configurations are
generated, to be used with 0, 1 or 3 steps of ρ = 0.25 stout smearing, respectively.

β 7.2 7.2 7.2 7.2 7.2
L/a 16 20 24 32 40
nstout 1 1 1 1 1
pinst.hit 0.597(2) 0.677(2) 0.729(2) 0.799(2) 0.838(2)

Tab. 2: Overview of the ensembles used in the “finite volume” study at fixed lattice spacing (β = 7.2). Each
ensemble of 10 000 configurations and is used after 1 step of ρ = 0.25 stout smearing. In addition,
the acceptance ratio of the instanton hit update (see text) at the respective (β, L/a) is given.

Fig. 2: Distribution of the integer valued topological charge qgeo (left) and of the real valued charge qfth
ahead of the cast-to-integer operation (right) with nstout = 0 at β = 7.2 (top) and β = 80.0 (bottom).
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Fig. 3: Eigenvalues aλi (i = 1, ... , 15) of DS on a |q | = 1 configuration at (β, L/a) = (7.2, 24) versus the
gradient flow time τ/a2 (left) and the resulting splittings aδ1 = 2aλ1, aδ2 = aλ3−aλ2, ... versus τ/a2.

4. Taste splittings: evolution under gradient flow

In the main investigation we shall use 0, 1 and 3 steps of stout smearing [13] at ρ = 0.25. Still,
to get an idea of the effect that any kind of smearing/smoothing/cooling of the gauge links has on
the eigenvalues of a Dirac operator, we think it is best to consider the evolution of the imaginary
part of the low-lying eigenvalues as a function of the gradient flow time τ/a2 ∈ R [17]. The result
for DS on an arbitrarily chosen configuration at β = 7.2 is shown in the left panel of Fig. 3.

In order to understand the resulting pattern, one must keep in mind that the background has
|q | = 1. Hence one expects a pairing λ1 ↔ −λ1 (the latter one is negative and thus not shown in
Fig. 3), while the subsequent pairings are λ2 ↔ λ3 and so on. Interestingly, for τ/a2 = 0 (on the
left axis) it seems impossible to guess these pairings from the spacing of the eigenvalues.

However, as the smoothing evolves the pairings become gradually visible, and the splittings
of the non-topological modes δ2 = λ3 − λ2, δ3 = λ5 − λ4, ... diminish at the same more-or-less
exponential rate as the would-be zero mode splitting (δ1 on this configuration) with τ/a2 (right
panel of Fig. 3). The 1 and 3 stout smearings in the main investigation correspond to τ/a2 = 0.25
and τ/a2 = 0.75 (marked with dotted vertical lines), up to flow-time discretization effects [17].

5. Taste splittings: eigenvalue pairs after 0, 1 and 3 stout smearings

We are now in a position to look at the splittings of the three operators D = DS,DKW,DBC

on the ensembles listed, for any of the smearing levels nstout = 0, 1, 3. As mentioned before, the
analysis proceeds with a view on the global topological charge of the background, since the first
|q | eigenvalues are paired with their negatives, while the higher eigenvalues are paired with an
adjacent one. In this sense the analysis treats the |q | would-be zero modes (on the positive side of
the imaginary parts) different from the remaining non-topological modes.

A typical result for nstout = 1 is shown in Fig. 4. Considering the would-be zero modes, the
KW splittings seem to beat the staggered splittings (columns 1,2,3 in the right panels). Regarding
non-topological modes, staggered fermions seem to have the smallest intra-taste splittings, followed

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
9
1

Intra-taste eigenvalue splittings of staggered, KW and BC fermions in 2D Stephan Dürr

Fig. 4: Taste-splittings aδi (i = 1, ... , 8) of the operators DS, DKW and DBC at β = 7.2 (top) and β = 80.0
(bottom) for nstout = 1. The would-be zero mode splittings aδ1, ... , aδ |q | are separated from the
non-topological splittings aδ |q |+1, ... by a dashed vertical line for |q | = 0 (left) and |q | = 3 (right).

by KW fermions, while BC fermions fare worst (all panels). This is for nstout = 1, and we have data
for nstout = 0 and nstout = 3, too. The main effect of an increased β is that the overall scale (y-axis)
becomes smaller. We also check that our data at (L/a)2/β = 80 have only mild finite size effects.

6. Taste splittings: Symanzik scaling after 0, 1 and 3 stout smearings

With the data of the previous section in hand we can check whether the eigenvalue splittings
satisfy any kind of Symanzik scaling. The standard lore says that the remnant chiral symmetry
of DS,DKW,DBC enforces cut-off effects to scale asymptotically like ∝ a2. One needs to specify
whether this statement is meant to hold for the dimensionful splittings δi or the dimensionless aδi.

How the first would-be zero mode splitting aδ1 depends on a ∝ β−1/2 is shown in Fig. 5 for two
options of |q | and nstout. The log-log representation suggests that (for each action) the Symanzik
law is aδ ∝ a2 without smearing and likely aδ ∝ a3 with smearing. This is rather surprising –
the standard lore says that an ultralocal modification (e.g. link smearing) of the action leaves the
Symanzik universality class unchanged. With smearing we see large logarithmic corrections.

6
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Fig. 5: Would-be zero mode splitting aδ1 versus a at |q | = 1, 3 (left, right) for nstout = 0, 3 (top, bottom).
The dotted lines are no fits but power laws aδ ∝ a2 at nstout = 0 (top row) and aδ ∝ a3 at nstout ≥ 1
(bottom row) with a prefactor which makes them pass through the leftmost datapoint.

How the first non-topological splitting aδ |q |+1 depends on a ∝ β−1/2 is shown in Fig. 6 for two
options of |q | and nstout. This time the situation is more diverse. For DKW,DBC the Symanzik law
is aδ ∝ a2 for any nstout. For DS the Symanzik law is aδ ∝ a2 at nstout = 0, while the situation is
less clear at nstout ≥ 1. With three stout steps the splittings pertinent to non-topological modes of
DS are reluctant to follow any integer-valued power law (in Fig. 6 the slope aδ ∝ a3 is too steep in
the range shown, but it might be appropriate for a → 0). Influenced by the clear pattern without
smearing (upper panels) and analogous data with gradient flow [18], one might conjecture that also
the non-topological staggered splittings eventually adopt the Symanzik law aδ |q |+1 ∝ a2. In the
event this conjecture is true, it will take much finer lattices to underpin it with numerical data.

Overall, these findings are puzzling. For the splittings pertinent to would-be zero modes there
seems to be a difference between the scaling law δi ∝ a without and δi ∝ a2 with smearing. This
holds for D = DS,DKW,DBC alike. For the taste splittings of non-topological modes we find δi ∝ a
as far as we can establish a power law, regardless of the smearing level and the action chosen.

7
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Fig. 6: First non-topological splitting aδi versus a at |q | = 0, 3 (left, right) for nstout = 0, 3 (top, bottom). For
DKW,DBC the dotted lines are power laws aδ ∝ a2, adjusted to the leftmost datapoint, at any nstout.
For DS the data suggest aδ ∝ a2 at nstout = 0 (top) and an unclear situation at nstout ≥ 1 (bottom).

7. Summary

We investigate the intra-taste splittings of three fermion formulations (staggered, KW and BC)
in the quenched Schwinger model. In 2D all three formulations are doubled, and this is why the
eigenvalues come in pairs (at intermediate β the latter are visible with smearing only, cf. Fig. 3).
We analyze the eigenvalue splittings with a view on the topological charge q ∈ Z of the gauge
background, treating would-be zero modes and non-topological modes separately.

Our results suggest an asymptotic Symanzik scaling of the form δ ∝ a for all unsmeared
formulations and mode types. On the other hand, with link smearing, there is a difference between
would-be zero modes and non-topological modes. For smeared KW and BC fermions we find
δ ∝ a2 for the former modes and δ ∝ a for the latter ones. For smeared staggered fermions we find
δ ∝ a2 for would-be zero modes and an inconclusive behavior for non-topological modes.

Our findings are unexpected, as they challenge the view that a fixed number of stout steps (or
a fixed flow-time in lattice units) leaves the Symanzik universality class unaffected. It would be
interesting to complement our data with a scaling study of taste breakings based on meson mass
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nstout = 0 nstout = 1, 3
wbz ntm wbz ntm

δstag ∝ ap 1 1 2 —
δKW ∝ ap 1 1 2 1
δBC ∝ ap 1 1 2 1

Tab. 3: Suggested p in the asymptotic Symanzik law δ ∝ ap for stagggered, KW and BC fermions, without
andwith link smearing, and for would-be zeromodes (“wbz”) versus non-topological modes (“ntm”).

splittings (in the spirit of the checks discussed in Ref. [8]), but this requires more computer time.
And of course it would be interesting to repeat this study in 4D (which again requires more computer
time, and will likely result in a final precision which cannot match the precision attainable in 2D).
For the time being we cannot resolve the conundrum.
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