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The Hamiltonian limit of lattice gauge theories can be found by extrapolating the results of
anisotropic lattice computations, i.e., computations using lattice actions with different temporal
and spatial lattice spacings (𝑎𝑡 ≠ 𝑎𝑠), to the limit of 𝑎𝑡 → 0. In this work, we present a study of
this Hamiltonian limit for a Euclidean𝑈 (1) gauge theory in 2+1 dimensions (QED3), regularized
on a toroidal lattice. The limit is found using the renormalized anisotropy 𝜉𝑅 = 𝑎𝑡/𝑎𝑠 , by sending
𝜉𝑅 → 0 while keeping the spatial lattice spacing constant. We compute 𝜉𝑅 in 3 different ways:
using both the “normal” and the “sideways” static quark potential, as well as the gradient flow
evolution of gauge fields. The latter approach will be particularly relevant for future investigations
of combining quantum computations with classical Monte Carlo computations, which requires
the matching of lattice results obtained in the Hamiltonian and Lagrangian formalisms.
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1. Introduction

The idea of studying gauge theories on a space-time lattice dates back to 1974-75 [1, 2]. Since
then, most numerical simulations have been performed in the Lagrangian formalism, using path
integral Monte Carlo techniques at imaginary time [3]. However, in recent years, we have been
witnessing a rapid development of Hamiltonian-based simulations using, e.g., tensor networks [4]
or quantum computing [5]. In particular, the rapid development of quantum technology [6] may
open a window for phenomenologically relevant Hamiltonian simulations on quantum computers
in the future. Although there is still a long way to go from both the theoretical and technological
perspective, first proof-of-concept simulations of lower-dimensional gauge theories have already
been performed using quantum computers (see, e.g., Ref. [7] for a recent review).

In the continuum limit, the Lagrangian and Hamiltonian formalisms are equivalent [8, 9].
On the lattice, the Hamiltonian limit is obtained by sending the temporal lattice spacing to zero,
𝑎𝑡 → 0, using an anisotropic lattice action [10–12]. The anisotropy is introduced through an
additional parameter in the lattice action, called the bare anisotropy 𝜉0. For 𝜉0 ≠ 1, this parameter
breaks the symmetry between the temporal and spatial contributions. The resulting renormalized
anisotropy 𝜉𝑅 = 𝑎𝑡/𝑎𝑠, defined as the ratio between the temporal and spatial lattice spacings, also
deviates from 1. The Hamitonian limit can be found by sending 𝜉𝑅 → 0, while keeping 𝑎𝑠 fixed.

At finite lattice spacing, there is a non-trivial dependence between the bare parameters and the
observables in the Lagrangian and Hamiltonian formalisms, and a matching is required. This can
be done in two ways. First, at a given spatial lattice spacing 𝑎𝑠, one can match the bare parameters
𝑔𝑖 to equally many observables 𝑂𝑖 , either perturbatively or non-perturbatively. Second, one can
perform a set of Lagrangian simulations at decreasing temporal lattice spacing 𝑎𝑡 , extrapolating to
the Hamiltonian limit (𝑎𝑡 → 0) in parameter space.

In this work, we explore the latter approach for a𝑈 (1) gauge theory in 2+1 dimensions. In the
literature, this theory is often referred to as QED 2+1 (see, e.g., Refs. [13–17]) or QED3 (see, e.g,
Refs. [18–23]). We choose to study this theory due to the recent proposal of Ref. [24] to combine
quantum computations of QED 2+1 with classical Monte Carlo computations, which requires
a matching of the lattice results obtained in the Hamiltonian and Lagrangian formalisms. The
generalisation of our study to higher dimensions and 𝑆𝑈 (𝑁) theories could be straight-forwardly
done with simple theoretical modifications, but would of course be computationally challenging.
We note that QED 2+1 is not only relevant for condensed matter systems [25], but also exhibits
confinement [26] and dynamical mass generation [27]. These features make it a toy model for QCD
and a benchmark model for the study of lattice gauge theories. Most crucially, due to its simple
structure, QED 2+1 offers the possibility of near-future simulations in the Hamiltonian formalism
using quantum hardware (see, e.g., Ref. [24, 28, 29]).

An important advantage of Hamiltonian simulations is the absence of specific numerical issues
in Monte Carlo simulations, in particular the sign problem [30] and the problem of critical slowing
down [12]. Therefore, in general, matching the two formalisms allows to span the whole parameter
space and to improve the continuum limit by adding more points to the extrapolation.

The rest of the paper is organized as follows. In Sec. 2, we introduce the lattice action and some
theoretical aspects of the Hamiltonian limit. Section 3 shows how to compute 𝜉𝑅 using the static
potential, and Sec. 4 the Hamiltonian limit for the plaquette expectation value. In Sec. 5, we discuss
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the calculation of 𝜉𝑅 using the gradient flow. In Sec. 6, we provide conclusions and an outlook.

2. Theoretical background

In this work, we study a Euclidean 𝑈 (1) gauge theory on a periodic (2+1)-dimensional lattice
of size Λ = 𝐿2 ×𝑇 = (𝑁𝑠𝑎𝑠)2 × (𝑁𝑡𝑎𝑡 ), where 𝑁𝑡 (𝑁𝑠) is the number of lattice sites in the temporal
(spatial) direction, separated by a lattice spacing 𝑎𝑡 (𝑎𝑠). We use the compact formulation [31, 32] of
the lattice gauge theory, where the degrees of freedom are the link operators𝑈𝜇 (𝑥) = exp(𝑖𝑎𝜇𝐴𝜇 (𝑥))
at each lattice point 𝑥 ∈ Λ with direction 𝜇. The ultraviolet and infrared divergences in the photon
propagator [33] are automatically regularised by the finite lattice spacing and volume.

The dynamics of the U(1) gauge theory is described by the standard Wilson action:

𝑆𝑊 =
𝛽

𝜉0

∑︁
𝑥,𝑖

Re (1 − 𝑃0𝑖 (𝑥)) + 𝛽𝜉0
∑︁
𝑥,𝑖> 𝑗

Re
(
1 − 𝑃𝑖 𝑗 (𝑥)

)
, (1)

where 𝑃𝜇𝜈 is the plaquette operator:

𝑃𝜇𝜈 = 𝑈𝜇 (𝑥)𝑈𝜈 (𝑥 + 𝜇̂)𝑈†
𝜇 (𝑥 + 𝜈̂)𝑈†

𝜈 (𝑥) . (2)

In the action above, we took into account that 𝑃𝜇𝜈 = 1 for 𝜇 = 𝜈 and that the trace operator for
the 𝑈 (1) gauge theory is trivial. Moreover, we defined 𝛽 = 2/𝑔2, where 𝑔 is the gauge coupling.
The parameter 𝜉0 is the bare anisotropy, which induces an asymmetry between the temporal and
spatial parts of the action, measured by the renormalized anisotropy 𝜉𝑅 = 𝑎𝑡/𝑎𝑠. We note that for
𝜉0 = 1 the action is symmetric, which implies 𝜉𝑅 = 1. However, for 𝜉0 = 0 we de facto remove
one dimension and hence simulate a different lattice theory. This implies that the Hamiltonian limit
of 𝜉𝑅 → 0 does not coincide with the naive limit of 𝜉0 → 0. Thus, the renormalized anisotropy
𝜉𝑅 depends on the coupling 𝛽. In Secs. 3 and 5, we describe how 𝜉𝑅 can be determined using the
quark static potential and the gradient flow evolution of gauge fields, respectively.

Instead of using the standard Wilson lattice action in Eq. (1) with the continuum limit∼ 𝐹𝜇𝜈𝐹𝜇𝜈

[34], we could have also used a different lattice action with the same continuum limit but other linear
combinations of links loops. Some lattice actions lead to smaller discretization effects [35, 36],
thus reducing the difference between 𝜉𝑅 and 𝜉0 [10]. Here, however, we intentionally focus on the
action in Eq. (1), because the corresponding Hamiltonian is currently more feasible to simulate.

The results for the observables presented in the following sections have been calculated using
the library provided in Ref. [37], with which we also generated the gauge configuration samples.
The statistical analysis was done with routines provided in Ref. [38].

3. Renormalized anisotropy from the static potential

At finite lattice spacing, the U(1) gauge theory in 2+1 dimensions is a confining theory [15, 39],
with the potential energy 𝑉 (𝑟) between two static quark charges, 𝑞 and 𝑞, given by [40–43]

𝑉 (𝑟) = 𝑎 + 𝜎 𝑟 + 𝑏 log (𝑟) . (3)
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Here 𝑟 is the distance separating 𝑞 and 𝑞, and 𝜎 is the string tension. On the lattice, 𝑉 (𝑟) is found
from the large-distance behaviour of the expectation value of Wilson loops [12],

lim
𝑥𝜇→∞

𝑊 (𝑥𝜇 + 𝑎𝜇 𝜇̂, 𝑟)
𝑊 (𝑥𝜇, 𝑟)

= exp(−𝑎𝜇𝑉 (𝑟)) , (4)

where 𝜇 is any direction on the space-time lattice. In the following, we use the conventions
𝑥𝜇 = (𝑡, 𝑥, 𝑦) and 𝜇̂ = (𝑡, 𝑥, 𝑦̂). We consider planar Wilson loops, where 𝑟 is the separation between
the starting point and the end point of the first half of the loop along a plane perpendicular to the
𝜇 direction. Which plane we refer to becomes clear from the chosen 𝑟 coordinate, e.g., the Wilson
loop 𝑊 (𝑡, 𝑥) refers to a rectangular loop in the 𝑡 − 𝑥 plane with 𝑟 = 𝑥.

The higher energy states in Eq. (4) contribute at finite 𝑥𝜇, but become exponentially suppressed
as 𝑥𝜇 increases. Therefore, the potential is found from a fit to a constant of the corresponding
effective curve in the large-𝑥𝜇 region,

𝑎𝜇𝑉
eff(𝑥𝜇, 𝑟) = log

(
𝑊 (𝑥𝜇, 𝑟)

𝑊 (𝑥𝜇 + 𝑎𝜇 𝜇̂, 𝑟)

)
. (5)

On the lattice, we can only compute quantities in lattice units, so the potential in Eq. (5) is measured
in units of 𝑎𝜇. On isotropic lattices, we get the same potential for any 𝜇, but on anisotropic lattices,
i.e., for 𝜉0 ≠ 1, there is a difference between the spatial-spatial and temporal-spatial loops, which
encodes the renormalized anisotropy 𝜉𝑅.

In this study, we compute the temporal static quark potential with both the normal [10] and
sideways [44] methods, which we will explain below, see Eqs. (7) and (9). We will later use
two different approaches to determine the anisotropy 𝜉𝑅, see Eqs. (8) and (10), and will use the
normal (sideways) temporal quark potential for the first (second) approach. The spatial static quark
potential is always computed as

lim
𝑥→∞

𝑊 (𝑥 + 1, 𝑦)
𝑊 (𝑥, 𝑦) = exp(−𝑎𝑠𝑉 (𝑦[𝑎𝑠])), (6)

and is used for both ways of determining the anisotropy, i.e., for both Eqs. (8) and (10) below. We
note that in Eq. (6), 𝑥 and 𝑦 are treated on the same footing and thus can be exchanged.

Normal potential. The normal temporal potential is calculated as

lim
𝑡→∞

𝑊 (𝑥, 𝑡 + 1)
𝑊 (𝑥, 𝑡) = exp(−𝑎𝑡𝑉 (𝑥 [𝑎𝑠])), (7)

where 𝑎𝑡 is the temporal lattice spacing. In Eqs. (6) and (7), the left-hand sides are equal for 𝜉0 = 1
but they differ due to anisotropy effects. Thus, as shown in Fig. 1(a), we find the renormalized
anisotropy 𝜉𝑅 through a linear fit of 𝑎𝑠𝑉 (𝑥) against 𝑎𝑡𝑉 (𝑥),

(𝑎𝑠𝑉 (𝑥)) = 1
𝜉𝑅

(𝑎𝑡𝑉 (𝑥)) + 𝐶̃ , (8)

where 𝐶̃ is a constant and 𝜉𝑅 is an estimator for the renormalized anisotropy 𝜉𝑅. Here, both 𝜉𝑅 and
𝐶̃ are treated as free parameters of the fit (see the left panel of Fig. 1), and 𝐶̃ is the usual arbitrary
shift in the potential energy [45]. This method is adapted from the one proposed in Ref. [10].
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Sideways potential. Analogously, the sideways temporal potential is determined from

lim
𝑥→∞

𝑊 (𝑥 + 1, 𝑡)
𝑊 (𝑥, 𝑡) = exp(−𝑎𝑠𝑉 (𝑡 [𝑎𝑡 ])) . (9)

Following Ref. [44], the anisotropy is calculated by performing a piecewise linear interpolation of
the temporal potential [see Eq. (9)]. We build the polygonal chain of the temporal potential curve
𝑉 (𝑡 [𝑎𝑡 ]) as a function of the temporal distance 𝑡/𝑎𝑡 . Then, we restrict ourselves to the points in
the linear region, for which 𝑉 (𝑟) ≈ 𝜎𝑟 [see Eq. (3)] by requiring 𝑟/𝑎𝑠 ≥ 2. For each point of the
spatial potential at distance 𝑦/𝑎𝑠 in this region, we find the temporal distance 𝑡/𝑎𝑡 that matches the
temporal and spatial values of the potential on the polygonal chain from the condition:

𝑉 (𝑦[𝑎𝑠]/𝜉𝑅) = 𝑉 (𝑡 [𝑎𝑡 ]). (10)

The 𝜉𝑅 needed to fulfill this equation is taken as the estimator for the renormalized anisotropy 𝜉𝑅.
The final result for 𝜉𝑅 is computed by averaging over all points (see the right panel of Fig. 1).

The two methods using Eqs. (8) and (10), respectively, are summarised and compared in Fig. 1,
showing good agreement for the resulting anisotropies 𝜉𝑅. In the remaining part of this paper, we
will omit the tilde for brevity and call the numerically determined anisotropies 𝜉𝑅.
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Figure 1: The normal and sideways potentials at 𝛽 = 1.7, 𝐿/𝑎𝑠 = 16, and 𝜉0 = 1/3. Left: the normal
potentials are fit to Eq. (8). Right: the sideways potentials are fit to Eq. (3). The temporal sideways potential
is rescaled with 𝜉𝑅, in order to be in units of 𝑎𝑠 , with 𝜉𝑅 as determined from Eq. (10).

4. Hamiltonian limit of the plaquette expectation value

The naive Hamiltonian limit is reached by sending 𝜉0 → 0, while keeping 𝛽 fixed (see, e.g.,
Ref. [43]). However, this is only approximately correct because 𝛽 renormalizes as well, and the
discretization effects grow significantly when approaching 𝜉0 → 0. Figure 2(a) shows the failure
of this naive approach for the plaquette expectation value ⟨𝑃⟩.

In order to take the correct Hamiltonian limit, the inverse coupling 𝛽 needs to be adjusted, such
that the spatial lattice spacing 𝑎𝑠 stays constant. While this has been previously investigated on the
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Figure 2: Left: naive Hamiltonian limit 𝜉0 → 0 of the plaquette expectation value with keeping 𝛽 constant,
using 𝛽 = 1.7 and 𝐿 = 16. The plaquette behaves non-monotonously at the smallest anisotropies, which
results in a large 𝜒2

red of the cubic fit against 𝜉2
0 . Right: Sommer parameter in lattice units, 𝑟0/𝑎𝑠 , is not

constant as a function of 𝜉2
0 , explaining why the naive limit of 𝜉0 → 0 keeping 𝛽 constant is not sufficient.

perturbative level [46, 47], in our work we focus on a general non-perturbative procedure, which is
independent of the coupling strength.

What one should do is to compute the renormalized anisotropy 𝜉𝑅, using either the static
potential (see Sec. 3) or the gradient flow (see Sec. 5), and send 𝜉𝑅 → 0 while keeping 𝑎𝑠 fixed. We
then first define the spatial lattice spacing 𝑎𝑠 in terms of the Sommer parameter 𝑟0 [48]. Analogously
to QCD, we impose the condition [48]

−𝑟2 d
d𝑟

𝑉 (𝑟) |𝑟=𝑟0 = 𝑐𝑠 = −1.65. (11)

The value of 𝑐𝑠 is arbitrary, but is usually chosen such that the point 𝑉 (𝑟0) lies in the region where
𝑉 (𝑟) is approximately linear. The resulting value for 𝑟0 should be in an intermediate region, because
the small-𝑟 region is hard to probe due to the lattice regularisation, while the large-𝑟 region results
in a low signal-to-noise ratio in the Wilson loop correlator of Eq. (5). In QCD, its value is fixed
to 𝑐𝑠 = −1.65 resulting in 𝑟0 = 0.5 fm [48] using experimental inputs; however, we note that this
value worked out well also for our data.

The dimensionless constant 𝑐𝑠 implicitly defines 𝑟0. Thus, it is sufficient to keep 𝑟0/𝑎𝑠 = 𝑟0
fixed throughout the extrapolation of 𝜉𝑅 → 0. For the extrapolation, we select a range of values
for the bare anisotropy 𝜉0 and, for each value of 𝜉0, perform simulations at different values of 𝛽.
Starting from one of these ensembles, we keep 𝑟0 fixed by interpolating the ensembles with the
same 𝜉0 in the different values of 𝛽 (see Fig. 3). To be more precise, we start at 𝛽 = 1.7 and 𝜉0 = 1,
compute 𝑟0, and this value for 𝑟0 we keep fixed (given by the horizontal line in Fig. 3). We then
decrease 𝜉0, keeping the physical volume approximately fixed. Thus, we increase the number 𝑇/𝑎𝑡
of temporal lattice points and keep fixed the number of spatial lattice points, 𝐿/𝑎𝑠 = 16, such that
𝜉0 ≡ 𝐿/𝑇 . The physical volume does not change much (𝜉0 ≈ 𝜉𝑅, see Fig. 1), leading to similar
finite-volume effects. For a given value of 𝜉0, we simulate at different bare couplings 𝛽 and fit
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𝑟0 linearly against 𝛽, which gives us the value of the renormalized coupling 𝛽R, defined through
𝑟0(𝛽R, 𝜉0) = 𝑟0(𝛽 = 1.7, 𝜉0 = 1) (see the intersecting lines in Fig. 3). Note that we call the coupling
𝛽𝑅 “renormalized” in the sense that is renormalized in 𝑎𝑡 but not in 𝑎𝑠. Finally, we interpolate
the renormalized anisotropy 𝜉𝑅 and the plaquette expectation value ⟨𝑃⟩ linearly to the values of 𝛽
determined from 𝑟0.

Figure 3: Numerical determination of the coupling 𝛽 such that 𝑟0 stays constant (black horizontal line). Each
marker (see legend) corresponds to a different value of 𝜉0, and the colored lines are the best-fit interpolations
at fixed 𝜉0. The error bands are shown in faint grey. The intersections of the lines with the horizontal one
(given by 𝑟0 = const. for 𝛽 = 1.7 and 𝜉0 = 1) determine the values of 𝛽 for which 𝑟0 = const..

The left panel of Fig. 4 demonstrates how much the renormalized coupling 𝛽𝑅 deviates from
the bare coupling 𝛽(𝜉0 = 1), i.e., how much the coupling needs to change in order to keep the
spatial lattice spacing 𝑎𝑠 constant. In the right panel, we show the resulting correct Hamiltonian
limit of ⟨𝑃⟩, which uses the renormalized 𝛽𝑅 that changes with 𝜉𝑅, instead of keeping 𝛽 fixed as
in the naive Hamiltonian limit (see Fig. 2). For our initial parameters of 𝛽 = 1.7 and 𝜉0 = 1, the
Hamiltonian limit of the plaquette expectation value is ⟨𝑃⟩ (𝑎𝑡 = 0) = 0.6381(12), as determined
with the normal potentials with 𝜒2

red = 0.27, or similarly ⟨𝑃⟩ (𝑎𝑡 = 0) = 0.6365(14), as determined
with the sideways potentials with 𝜒2

red = 0.34.

5. Renormalized anisotropy from the gradient flow

The renormalized anisotropy 𝜉𝑅 can be determined using either the static potential (see Sec. 3)
or the gradient flow evolution of gauge fields, as described in the current section. Using the static

7
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Figure 4: Left: deviation of the renormalized coupling 𝛽𝑅 from the bare coupling 𝛽(𝜉0 = 1), corresponding
to the change in 𝛽 required to keep 𝑎𝑠 constant. Right: correct Hamiltonian limit of ⟨𝑃⟩ using 𝛽𝑅 instead of
keeping 𝛽 fixed. The extrapolation of ⟨𝑃⟩ to 𝜉𝑅 → 0 is done with a simple cubic ansatz in 𝜉2

𝑅
.

potential to find 𝜉𝑅 has some drawbacks due to the extraction of the signal 𝑉 (𝑟) from the Wilson
loop correlator. The temporal extent of the lattice must be large enough, in order to find a plateau
for 𝑉 (𝑟) before the correlator signal degrades [49]. Besides this, 𝑎𝑠𝑉 (𝑟) increases with decreasing
𝛽 [2]; thus, in the small-𝛽 region, the leading signal exp{−𝑡𝑉 (𝑟)} sooner ends below the statistical
noise. It is therefore clear that another approach is needed to cover the full parameter space.

Analogously to QCD [50], we propose to use the Wilson gradient flow. First, we evolve in the
flow time 𝜏 the gauge links 𝑈𝜇 (𝑥, 𝜏) according to the flow equation [51, 52]

𝑑

𝑑𝜏
𝑈𝜇 (𝑥, 𝜏) = − 1

𝛽

[
∇𝜇 (𝑥)𝑆𝑊 (𝑈)

]
𝑈𝜇 (𝑥, 𝜏) , (12)

where ∇𝜇 (𝑥) is the covariant group derivative and 𝑆𝑊 is the Wilson action defined in Eq. (1). Then,
we find the flowed “gauge energies” as

𝐸 (𝜏) = 2
∑︁
𝑥

∑︁
𝜇>𝜈

Re Tr
[
1 − 𝑃𝜇𝜈 (𝑥, 𝜏)

]
. (13)

At any flow time 𝜏 > 0, both perturbation theory and numerical Lattice QCD results unveil that
these quantities are already renormalized [51]. The electric (magnetic) energy 𝐸𝑡𝑠 (𝐸𝑠𝑠) can be
obtained by summing over the temporal (spatial)-spatial plaquettes. Expanding the link operator
𝑈𝜇 (𝑥, 𝜏) = exp(𝑖𝑎𝜇𝐴𝜇 (𝑥)) to 𝑂 (𝑎4

𝑠), we find:

𝐸𝑡𝑠 ∼ 𝑎2
𝑡 𝑎

2
𝑠

∑︁
𝑥

∑︁
𝑖

𝐹2
0𝑖 (𝑥, 𝜏) = 𝑎2

𝑡 𝑎
2
𝑠𝑉 (𝑑 − 1)𝐸̃𝑡𝑠 , (14)

𝐸𝑠𝑠 ∼ 𝑎4
𝑠

∑︁
𝑥

∑︁
𝑖≠ 𝑗

𝐹2
𝑖 𝑗 (𝑥, 𝜏) = 𝑎4

𝑠𝑉
(𝑑 − 1) (𝑑 − 2)

2
𝐸̃𝑠𝑠 , (15)

where 𝑉 is the lattice volume, 𝑑 is the number of dimensions, and 𝐸̃𝑡𝑠 and 𝐸̃𝑠𝑠 are the Euclidean
average energy densities per space-time direction. In the continuum limit, there is no distinction

8
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among directions, and each pair 𝜇𝜈 gives the same contribution in physical units. In that limit, we
have 𝐸̃𝑡𝑠 = 𝐸̃𝑠𝑠; thus, 𝜉𝑅 can be estimated (up to discretization effects) from the ratio

𝜁 (𝜏) =

√︄
𝑑 − 2

2
𝐸𝑡𝑠 (𝜏)
𝐸𝑠𝑠 (𝜏)

(16)

at a reference flow time 𝜏0, given by 𝜉𝑅 = 𝜁 (𝜏0). An advantage of this approach is that a few hundred
representative configurations already give a small uncertainty. The reason is that the gradient flow
smooths the fields, suppressing the discretization effects in the flowed plaquette [51].

As for 𝑟0, the choice of 𝜏0 is arbitrary, and any positive value would lead to a renormalized
quantity. From perturbation theory, we know that the flowed total energy (in physical units) goes as
𝐸 (𝜏) ∼ 𝑔2𝜏−𝑑/2 [51]. We also recall that, in natural units, [𝑔] = [eV] (4−𝑑)/2 [34] and [𝜏] = [eV]−2

from the equations of motion (12); therefore, we can use the simple condition

𝜏2𝐸 (𝜏) |𝜏=𝜏0 = 𝑐 , (17)

where 𝑐 is a dimensionless constant. This procedure is illustrated in Fig. 5. To our knowledge,
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2
s
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Figure 5: Left: fixing the reference flow time 𝜏0 from Eq. (17) (red curve), for the ensemble with 𝐿 = 16,
𝛽 = 1.55, and 𝜉0 = 0.4. Right: determination of 𝜉𝑅 using 𝜏0 from Eq. (16) (red curve), for the same
ensemble. Note that both plots contain error bars, which are hard to visualize due to the small uncertainty of
the flowed observables (see text).

the value of 𝑐 for an Abelian 𝑈 (1) gauge theory in 2 + 1 dimensions has not been determined yet,
though we mention that in 3 + 1 dimensions this was investigated for 𝑆𝑈 (𝑁𝑐) theories as a function
of 𝑁𝑐 [53]. We determine the value of 𝑐 such that our results for 𝜉𝑅 agree with the results for 𝜉𝑅
obtained from the sideways static potential within 1𝜎, finding 𝑐 = 1.628(91) · 10−3. This result has
to be taken with a grain of salt, since it includes discretization effects also due to our prescription for
𝑟0. The uncertainty gives the interval inside which the can vary 𝑐 without spoiling the compatibility.
In Fig. 6, we compare the values found with the two different approaches, using 𝑐 = 1.628 · 10−3.

9
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Figure 6: Renormalized anisotropy 𝜉𝑅 determined with the static sideways potential, compared to 𝜉𝑅

determined with the Wilson gradient flow using 𝑐 = 1.628 · 10−3. Each point corresponds to an ensemble,
labelled with its value of 𝛽 and 𝜉0. The red line, for which 𝑦 = 𝑥, highlights how the choice of a single value
for 𝑐 yields a 1𝜎 compatibility for all the ensembles. Note that the horizontal error bars are hardly visible
due to the small uncertainty of 𝜉𝑅 determined with the gradient flow (see text).

6. Conclusions and outlook

In this work, we have studied the Hamiltonian limit of Lattice QED in 2+1 dimensions. We
have reviewed the issues related to taking this limit, showing an explicit numerical evidence that
the naive limit of taking the temporal lattice spacing to zero, 𝑎𝑡 → 0, leads to the wrong result.

In particular, we have determined the Hamiltonian limit of the plaquette expectation value ⟨𝑃⟩,
along the parameter space trajectory passing through the point 𝛽 = 1.7 and 𝜉 = 1. For this, we have
provided a non-perturbative prescription to keep the spatial lattice spacing 𝑎𝑠 fixed, while sending
the temporal lattice spacing to zero, 𝑎𝑡 → 0. This is done through the renormalized anisotropy
𝜉𝑅 = 𝑎𝑡/𝑎𝑠, moving along the curve 𝑟0/𝑎𝑠 = const. .

We have discussed how to calculate 𝜉𝑅 using the static quark potential 𝑉 (𝑟), either the normal
or sideways potential. This approach needs a good signal-to-noise ratio and a low excited-states
contamination in the Wilson loop correlators, requiring large enough values of 𝛽 and large enough
volumes of the lattice. Following this observation, we investigated an alternative approach to
determine 𝜉𝑅 using the gradient flow, finding agreement with the first approach for large 𝛽. In the
future, we aim to use this second approach in order to find 𝜉𝑅 for small values of 𝛽. This will be
particularly relevant for combining quantum computations with classical Monte Carlo computations
(as proposed, e.g. in Ref. [24]), which requires the matching of lattice results obtained in the

10
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Hamiltonian and Lagrangian formalisms.
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