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1. Introduction

The Schwinger model [1] exhibits many interesting features and its similarities to the QCD confined
sector makes it a frequently studied toy model on the lattice. One unique and interesting feature
is the bosonization of the massive model in the low energy sector, which enables the extraction of
meson masses directly from the Lagrangian (see [2, 3]). In his fundamental paper from 1976 [4]
Coleman discusses the massive Schwinger model and leaves three open questions concerning the
2-flavor case. Answers to some of these question have been provided prior to Georgi as can be found
for example in [5]. Georgi provides answers to these questions through conformal coalescence in
unparticle physics and shows that in the low energy sector of the Schwinger model, isospin breaking
effects are automatically fine-tuned [6].
Large distance small energy dynamics in the massive Schwinger model have been studied prior by
Smilga [7, 8] where the mass gap in the 2-flavor case and the analytic form of the bosonic correlator
were determined in the bosonized theory.
The focus of this work lies on the analytical expansion and numerical verification of Georgis state-
ment that isospin breaking effects are exponentially suppressed in the massive 2-flavor Schwinger
model by powers of exp(−(𝜇/𝑚 𝑓 )2/3) where 𝜇 is the Schwinger mass and 𝑚 𝑓 the fermion mass.
The aim of this particular proceedings contribution is to give an explicit form of the mass splitting
which was not provided in [6]. Numerical results can be found in [9].
For 𝑁 𝑓 = 2 flavors, the bosonized Lagrangian in the 1+1D Schwinger model is given by

L =

2∑︁
𝑓 =1

1
2
(𝜕𝜇Φ 𝑓 )2 − 𝜇2

4
©«

2∑︁
𝑓 =1

Φ 𝑓 + 𝜃
√

4𝜋
ª®¬

2

+
2∑︁
𝑓 =1

𝑐𝑚2
𝑓 𝑁𝑚 𝑓

[
cos

√
4𝜋Φ 𝑓

]
+ 𝑐𝑜𝑛𝑠𝑡 (1)

where Φ 𝑓 are pseudoscalar fields, 𝜇 = 𝑒

√︃
2
𝜋

is the Schwinger mass, 𝜃 the vacuum angle, 𝑐 = 𝑒𝛾

2𝜋 is
a constant with 𝛾 the Euler constant, 𝑚 𝑓 the fermion mass for flavor 𝑓 , and 𝑁𝑚 𝑓

denotes normal-
ordering with respect to the mass 𝑚 𝑓 .
In the strong coupling limit for light quarks (𝑒 ≫ 𝑚 𝑓 ) we can change the field variables by
diagonalizing Φ 𝑓

𝜒𝑎 = 𝑂𝑎
𝑓Φ

𝑓 + 𝜃
√

8𝜋
𝛿𝑎1 (2)

using the orthogonal matrix

𝑂 𝑓 =
1
√

2

(
1 1
1 −1

)
. (3)

Decoupling the heavy field 𝜒1 that carries the mass ∼ 𝜇 and renormal-ordering following Coleman
[4]

𝑁𝑚 𝑓

[
cos

(
−𝜃

2
+
√

4𝜋𝑂2
𝑓 𝜒

2
)]

=

(
𝑀

𝑚 𝑓

) 1
𝑁𝑓

𝑁𝑀

[
cos

(
−𝜃

2
+
√

4𝜋𝑂2
𝑓 𝜒

2
)]
, (4)

the resulting Lagrangian is that of the sine-Gordon theory with 𝛽 =
√

2𝜋.

Llight =
1
2
(𝜕𝜇𝜒2)2 + 1

2𝜋
𝑀2𝑁𝑀

[
cos

√
2𝜋𝜒2

]
(5)
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where the mass is given by

𝑀 =

(
𝑒𝛾𝜇1/2

√︃
𝑚2

1 + 𝑚
2
2 + 2𝑚1𝑚2 cos 𝜃

)2/3
. (6)

Coleman identified three solutions: The soliton (𝑄 = 0, 𝐼3 = +1), the antisoliton (𝑄 = 0, 𝐼3 = −1)
and the lighter breather of the two breather solutions (𝑄 = 0, 𝐼3 = 0) that correspond to the pions
𝜋+, 𝜋− and 𝜋0 respectively. All three solutions are the lightest physical states of mass 𝑀 where 𝑀
is flavor dependent and the exponent of 2/3 is due to 𝑁 𝑓 = 2 [2].
Following Georgi, the massless composite operators of anomalous dimension 1/2

𝑂 𝑓 = 𝜓
∗
𝑓 1𝜓 𝑓 2, 𝑂∗

𝑓 = 𝜓
∗
𝑓 2𝜓 𝑓 1 (7)

and flavor 𝑓 = 1, 2 have oppositely charged isospin components, 𝐼3 = +1,−1. Mixing these
operators as

𝑂±1 = 𝑒𝑖 𝜃/2𝑂1 ± 𝑒−𝑖 𝜃/2𝑂∗
2 𝑂∗

±1 = 𝑒−𝑖 𝜃/2𝑂∗
1 ± 𝑒

𝑖 𝜃/2𝑂2 (8)

all 2-point correlators vanish except for

⟨0|𝑇 (𝑂±1(𝑥)𝑂∗
±1(0)) |0⟩ =

𝜉𝜇

2𝜋2 (𝑒
𝜅0 ± 𝑒−𝜅0) 1

√
−𝑥2 + 𝑖𝜀

(9)

where
𝜅0(𝑥) = 𝐾0

(
𝜇
√︁
−𝑥2 + 𝑖𝜀

)
(10)

with the Schwinger mass 𝜇 and 𝐾0 is a modified Bessel function of the second kind. One can easily
check that the𝑂−1 correlator vanishes exponentially, while𝑂1 and𝑂∗

2 in the𝑂+1 correlator become
identical in the long distance limit. This phenomenon is referred to as conformal coalescence by
Georgi.
The above formulation of operators and 2-point correlation functions come from the Sommerfield
model which is massless fermions in 2D coupled to a massive vector field [10, 11]. It is an analog
Banks-Zaks model [12]. The Schwinger model is an asymptotic case of the Sommerfield model
where the mass of the vector bosons go to zero [10, 13].

2. Degenerate Masses

We will now consider the case of stable bound isotriplets in the 2 flavor Schwinger model for 𝜃 = 0.
From the standard bosonization rules using eq.(2) and 𝑀 ∝ 𝑚

3
2
𝑓

we find the mass term in eq.(5) in
leading order

1
2𝜋
𝑀2𝑁𝑀

[
cos

√
2𝜋𝜒2

]
∝ 𝑚 𝑓 (�̄�1𝜓1 + �̄�2𝜓2). (11)

which in turn can be expressed using the composite operators as

1
2𝜋
𝑀2𝑁𝑀

[
cos

√
2𝜋𝜒2

]
∝ 𝑚 𝑓 (𝑂1 +𝑂2) + ℎ.𝑐. (12)

Introducing a flavor degenerate mass term at low energies we use eq.(8)

𝑚 𝑓 (𝑂+1 +𝑂∗
+1) (13)
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and from the well known asymptotic behavior of 𝐾0 and subsequently 𝜅0, i.e.

𝜅0(𝑥)
𝑥→∞−−−−→ −𝑖

√︂
𝜋

2𝜇𝑥
𝑒−𝑖 (𝜇𝑥−

𝜋
4 ) (14)

in leading order we find that the exponential factors in eq.(9) both asymptote to 1 as 𝑥 → ∞.
Consequently the long distance behavior of the 2-point correlator of 𝑂+1(𝑥) is given by

⟨0|𝑇 (𝑂+1(𝑥)𝑂∗
+1(0)) |0⟩

𝑥→∞−−−−→ 𝜉𝜇

𝜋2
1

√
−𝑥2 + 𝑖𝜀

=
𝜉𝜇

𝜋2 ⟨0𝑇 (𝑂1/2(𝑥)𝑂∗
1/2(0)) |0⟩ (15)

where we have used the massless half dimensional conformal operator 𝑂1/2 introduced by Georgi
[6, 13] where the half dimension refers to the asymptotic anomalous dimension for large |𝑥 | . The
mass term may now be written as

√
𝜉

𝜋
𝑚 𝑓

√
𝜇(𝑂1/2 +𝑂∗

1/2) (16)

implying the relevant mass scale in the deep IR is given by (𝑚2
𝑓
𝜇) 1

3 . Wick rotation to Euclidean
space gives a complex spatial dimension [14] and since we consider the long distance conformal
sector

(𝑚2
𝑓 𝜇)

− 1
3 =

√︁
−𝑥2 = 𝑖𝑥. (17)

This mass scale is used in the following consideration to extract the isospin splitting term.

3. Non-Degenerate Masses

We now consider non-degenerate masses 𝑚 𝑓 ± 𝛿𝑚 with an isospin splitting term

𝛿𝑚(𝑂−1 +𝑂∗
−1). (18)

Looking once more at the asymptotic behavior of the exponential factors in eq.(9) we find that in
leading order

𝑒𝜅0 − 𝑒−𝜅0

2
𝑥→∞−−−−→ 1

2
(𝑒−𝑖

√
𝜋

2𝜇𝑥 𝑒
−𝑖 (𝜇𝑥− 𝜋

4 )
− 𝑒𝑖

√
𝜋

2𝜇𝑥 𝑒
−𝑖 (𝜇𝑥− 𝜋

4 )
) (19)

𝑥→∞−−−−→ −𝑖
√︂

𝜋

2𝜇𝑥
𝑒−𝑖 (𝜇𝑥−

𝜋
4 ) (20)

and so the asymptotic behavior of the 2-point correlator of 𝑂+1(𝑥) is

⟨0|𝑇 (𝑂−1(𝑥)𝑂∗
−1(0)) |0⟩

𝑥→∞−−−−→ − 𝜉𝜇

𝜋2 𝑖

√︂
𝜋

2𝜇𝑥
𝑒−𝑖 (𝜇𝑥−

𝜋
4 ) ⟨0|𝑇 (𝑂1/2(𝑥)𝑂∗

1/2(0)) |0⟩ (21)

= − 𝑖𝜉
√︂

𝜇

2𝜋3𝑥

√
𝑖𝑒−𝑖 (𝜇𝑥 ) ⟨0|𝑇 (𝑂1/2(𝑥)𝑂∗

1/2(0)) |0⟩ (22)

=𝜉

√︂
1

2𝜋3 (𝑚 𝑓 𝜇
2) 1

3 𝑒
−
(

𝜇

𝑚 𝑓

) 2
3

⟨0|𝑇 (𝑂1/2(𝑥)𝑂∗
1/2(0)) |0⟩ (23)
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using the mass scale found in sect.2 in the last step. The isospin splitting term is then

𝛿𝑚

√√√
𝜉

√︂
1

2𝜋3 (𝑚 𝑓 𝜇
2) 1

3 𝑒
−
(

𝜇

𝑚 𝑓

) 2
3

(𝑂1/2 +𝑂∗
1/2) (24)

and the isospin mass splitting scale is given by

Δ𝑀3
𝑠 = 𝛿𝑚2𝑚

1
3
𝑓
𝜇

2
3 𝑒

−
(

𝜇

𝑚 𝑓

) 2
3

. (25)

We note that the 𝑂−1(𝑥) correlator vanishes just one order more rapidly in 𝑥− 1
2 than the 𝑂+1(𝑥)

correlator and so the argument of 𝑂−1(𝑥) vanishing while 𝑂+1(𝑥) goes to a conformal operator for
𝑥 → ∞ still holds.
The overall mass term in the Lagrangian of half dimensional conformal operators is thus

√
𝜉

𝜋
𝑚 𝑓

√
𝜇
©«1 + 𝛿𝑚

(𝜋
2

) 1
4
𝑚

− 5
6

𝑓
𝜇−

1
6 𝑒

− 1
2

(
𝜇

𝑚 𝑓

) 2
3 ª®®¬ (𝑂1/2 +𝑂∗

1/2) (26)

and knowing from the mass scale that 𝑀𝜋 ∝ 𝑚
2
3
𝑓

we find the isospin breaking corrections to leading

order in the 𝛿𝑚
𝑚 𝑓→0
−−−−−→ 0 limit

𝑀𝜋 ∝ 𝑚
2
3
𝑓

©«1 + 2
3

(𝜋
2

) 1
4 𝛿𝑚

𝑚
5
6
𝑓
𝜇

1
6

𝑒
− 1

2

(
𝜇

𝑚 𝑓

) 2
3 ª®®¬ . (27)

Since the neutral pion operator in the nondegenerate case

𝑂 𝜋0 (𝑥) = 1
2
(𝜓1(𝑥)𝛾5𝜓1(𝑥) − 𝜓2(𝑥)𝛾5𝜓2(𝑥)) (28)

results in the propagator

⟨0|𝑇 (𝑂 𝜋0 (𝑥)𝑂∗
𝜋0 (0)) |0⟩ ∝ ⟨0|𝑇 (𝑂+1(𝑥)𝑂∗

+1(0)) |0⟩, (29)

the splitting term in eq.(27) will only appear in the charged pion.
For comparison, the relation between the pion mass and the fermion mass in the degenerate two
flavor case was found in [8] and reads

𝑀𝜋 = 2.008...𝑚
2
3
𝑓
𝑒

1
3 . (30)

4. Lattice Observables

In leading order the charged pion propagator does not feature isospin mass splitting. It consists of
a connected term and is given by

⟨𝑂 𝜋± (𝑥)𝑂 𝜋± (𝑦)⟩ = −tr(𝐷−1
𝑢 (𝑥, 𝑦)𝛾5𝐷

−1
𝑑 (𝑦, 𝑥)𝛾5). (31)

5
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x y

𝐷−1
𝑢

−𝐷−1
𝑑

The neutral pion propagator is given by

⟨𝑂 𝜋0 (𝑥)𝑂 𝜋0 (𝑦)⟩ =1
2
(−tr(𝐷−1

𝑢 (𝑥, 𝑦)𝛾5𝐷
−1
𝑢 (𝑦, 𝑥)𝛾5) + tr(𝐷−1

𝑢 (𝑥, 𝑥)𝛾5)tr(𝐷−1
𝑢 (𝑦, 𝑦)𝛾5) (32)

− tr(𝐷−1
𝑢 (𝑥, 𝑥)𝛾5)tr(𝐷−1

𝑑 (𝑦, 𝑦)𝛾5) + 𝑢 ↔ 𝑑 (33)

x y

𝐷−1
𝑢

−𝐷−1
𝑢

+ x y

−𝐷−1
𝑢

−𝐷−1
𝑢

−𝐷−1
𝑢

−𝐷−1
𝑑

which holds connected terms as given in eq.(31) as well as disconnected terms that display the
mass splitting. Since the connected term is free of isospin breaking effects in leading order, both
connected terms in the charged and neutral pion propagator are equal. Ultimately the leading order
neutral pion mass is given by

𝑀𝜋0 = 𝑀𝜋± + Δ𝑀. (34)

To numerically investigate the exponential suppression of the splitting without further knowledge
of the overall prefactor we consider the ratio

𝑀𝜋± + Δ𝑀

𝑀𝜋±
= 1 + 2

3

(𝜋
2

) 1
4 𝛿𝑚

𝑚
5
6
𝑓
𝜇

1
6

𝑒
− 1

2

(
𝜇

𝑚 𝑓

) 2
3

. (35)

from which only the splitting term is taken into account for the numerical results. Specifically we
consider

log

©«
3
2

(
2
𝜋

) 1
4 𝑚

5
6
𝑓
𝜇

1
6

𝛿𝑚︸            ︷︷            ︸
𝑘

Δ𝑀

𝑀𝜋±

ª®®®®®¬
= −1

2

(
𝜇

𝑚 𝑓

) 2
3

(36)

where k is kept constant. Numerical investigations of this behaviour are presented in a companion
paper [9]. As detailed there, we find that the measured pion mass splitting does indeed follow the
predicted exponential behavior, even when the mass splitting is relatively large. However, there
seems to be a substantial deviation in the factor k, which is dependent on the splitting.

5. Conclusion and Outlook

We have studied and expanded on Georgi’s analytical results of isospin breaking effects by conformal
coalescence in the 2-flavor Schwinger model [6] and tested the exponential suppression of the mass

6
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splitting numerically on the lattice. The results confirm an exponential behavior in the mass splitting
even for relatively large splittings. The offset to eq.(36) observed in the measurements indicates that
there is a discrepancy in the factor 𝑘 , which at the moment we do not understand. Hence, further
analytic investigations, perhaps including a more systematic expansion procedure in 𝑚 𝑓 and 𝛿𝑚,
will be necessary to obtain further insight.
Finally, we would like to point out that due to the different power counting schemes, the results
obtained in this proceeding are not applicable to Georgi’s latest publication where he considers
small equal and opposite fermion masses [14].
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