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1. Introduction

There has been a tantalizing discrepancy between the experimental and theoretical values for
the anomalous magnetic moment of the muon [1]. On the experimental side, two experiments at
Fermilab [2] and J-PARC [3] are aiming to further decrease the uncertainty in the next few years.
Hence, progress on the theoretical side is crucial to keep up with experiments. The main uncertainty
in the theoretical calculation stems from the hadronic vacuum polarization (HVP) contribution. To
keep up with experimental precision, a subpercent precision is required for the HVP contribution.
While there exist several sub-percent calculations of the connected light contribution (see Ref. [1] for
an overview) at the isospin-symmetric point, the systematic uncertainty due to neglecting isospin-
breaking effects becomes crucial. Several collaborations have started to take these effects into
account for the anomalous magnetic moment [4–10].

There exist different ways of including these effects; for a detailed review of some of these
methods see Ref. [11, 12]. Among these is QEDL that removes the zero modes of the photonic
field by hand [13] and thus creates a non-local field theory. Alternatively, QEDm uses a finite
photon mass as an infrared regulator [14, 15], but requires an extrapolation to zero photon mass. In
QED∞ the QED part is analytically calculated in the continuum [16–18]. In this proceedings, we
choose QEDC in which the zero modes of the photon field are absent due to C★ boundary conditions
[19–24], thus allowing for a local field theory without including an additional regulator. Using
these boundary conditions, we explore the connected HVP contribution.

After a brief introduction to the HVP in Section 2, we introduce a few aspects of C★ boundary
conditions in Section 3. In Section 4 we present our results of vector masses and the HVP and
conclude in Section 5.

2. Hadronic vacuum polarization

The HVP to the muon anomalous magnetic moment can be obtained using the time-momentum
representation [25]:

𝑎HVP
𝜇 =

(𝛼
𝜋

)2
∫ ∞

0
d𝑥0𝐺 (𝑥0)�̃� (𝑥0;𝑚𝜇). (1)

Here 𝛼 is the electromagnetic coupling, �̃� (𝑥0;𝑚𝜇) is a kernel function defined in Ref. [26, Eq. (8)]
with the muon mass 𝑚𝜇, and 𝐺 (𝑥0) is expressed in terms of the two-point correlation function of
the electromagnetic current 𝑗𝑘 (𝑥):

𝐺 (𝑥0) = −1
3

3∑︁
𝑘=1

∫
d3𝑥 ⟨ 𝑗𝑘 (𝑥) 𝑗𝑘 (0)⟩ . (2)

The integral over time 𝑥0 in Eq. (1) can be split into two parts to take into account the finite-time
extent on the lattice and to treat the noise that dominates the signal for large times separately [25],
see Section 4.2.
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3. C★ boundary conditions

At the target precision of one percent it is crucial to include QED effects in lattice simulations,
as they are expected to be of the order of one percent. A naive implementation of QED on a
finite-volume lattice with periodic boundary conditions does not allow to simulate charged particles
because states with non-zero electric charge violate Gauss’ law. C★ boundary conditions [19–23]
provide a remedy, and they do not lead to a non-local field theory as opposed to QEDL. The fields
obey the following constraints in spatial direction �̂� = 1̂, 2̂, 3̂

𝜓 𝑓 (𝑥 + 𝐿�̂�) = 𝜓𝑐
𝑓 (𝑥) := 𝐶−1𝜓

𝑇

𝑓 (𝑥)

𝜓 𝑓 (𝑥 + 𝐿�̂�) = 𝜓
𝑐 (𝑥) := −𝜓𝑇

𝑓 (𝑥)𝐶

𝑈𝜇 (𝑥 + 𝐿�̂�) = 𝑈𝑐
𝜇 (𝑥) := 𝑈𝜇 (𝑥)∗

𝐴𝜇 (𝑥 + 𝐿�̂�) = 𝐴𝑐
𝜇 (𝑥) := −𝐴𝜇 (𝑥),

(3)

where 𝜓 𝑓 and 𝜓 𝑓 are the fermionic fields of flavor 𝑓 ,𝑈𝜇 (𝑥) ∈ 𝑆𝑈 (3) are the QCD gauge links and
𝑒𝑖𝐴𝜇 (𝑥) ∈ 𝑈 (1) are the QED gauge links; 𝑈∗

𝜇 denotes complex conjugation and we denote charge
conjugation by the superscript 𝑐. The charge conjugation matrix 𝐶 obeys 𝐶𝛾𝜇𝐶−1 = −𝛾𝑇𝜇 with the
Euclidean gamma matrices 𝛾𝜇. We note that the photon field 𝐴𝜇 (𝑥) is antiperiodic and thus does
not have a zero-momentum component by construction.

3.1 Correlation functions

It is useful to combine 𝜓 𝑓 and 𝜓 𝑓 into a spinor doublet

𝜒 𝑓 (𝑥) =
(
𝜓 𝑓 (𝑥)
𝜓𝑐

𝑓
(𝑥)

)
(4)

and express the action in terms of 𝜒 𝑓 . When using the Wilson-Dirac formulation with a
Sheikholeslami-Wohlert improvement term (see Refs. [27, 28] for details), we find that the fermionic
action can be written as

𝑆 = −1
2

𝑁 𝑓∑︁
𝑓 =1

𝜒𝑇𝑓 𝐶𝜎1𝐷𝜒 𝑓 , (5)

where 𝜎1 is the first Pauli matrix acting on the spinor doublet in Eq. (4) and 𝑁 𝑓 is the number
of flavors. We note that 𝐷 has 24𝑉 × 24𝑉 complex components as it acts on a spinor doublet (𝑉
denotes the lattice volume). Wick contractions yield (see Ref. [23, Appendix B])

𝜒 𝑓 (𝑥)𝜒 𝑓 ′ (𝑦)𝑇 = −𝛿 𝑓 , 𝑓 ′𝐷
−1
𝑓 ′ (𝑥; 𝑦)𝜎1𝐶

−1. (6)

To evaluate the two-point function in Eq. (1) we use

𝑗𝜇 (𝑥) =
1
2

𝑁 𝑓∑︁
𝑓 =1

𝑞 𝑓 𝜒
𝑇
𝑓 (𝑥)𝜎3𝜎1𝐶𝛾𝜇𝜒 𝑓 (𝑥), (7)
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where 𝑞 𝑓 the charge of flavor 𝑓 , 𝜎3 the third Pauli matrix acting on the spinor doublet. When ex-
pressed in terms of 𝜓 𝑓 and 𝜓 𝑓 , 𝑗𝜇 (𝑥) is equivalent to the familiar expression

∑
𝑓 𝑞 𝑓𝜓 𝑓 (𝑥)𝛾𝜇𝜓 𝑓 (𝑥).

Inserting Eq. (7) into the two-point correlation function, we find〈
𝑗𝜇 (𝑥) 𝑗𝜈 (𝑦)

〉
=

〈
𝑗𝜇 (𝑥) 𝑗𝜈 (𝑦)

〉
conn +

〈
𝑗𝜇 (𝑥) 𝑗𝜈 (𝑦)

〉
disc ,

where in this proceedings we only take the connected contractions into account1:〈
𝑗𝜇 (𝑥) 𝑗𝜈 (𝑦)

〉
conn =

1
2

𝑁 𝑓∑︁
𝑓 =1

𝑞2
𝑓 tr

[
𝜎3𝐷

−1
𝑓 (𝑥; 𝑦)𝛾𝜈𝜎3𝐷

−1
𝑓 (𝑦; 𝑥)𝛾𝜇

]
, (8)

and neglect the disconnected contribution

〈
𝑗𝜇 (𝑥) 𝑗𝜈 (𝑦)

〉
disc =

©«1
2

𝑁 𝑓∑︁
𝑓 =1

𝑞 𝑓 tr
[
𝜎3𝛾𝜇𝐷

−1
𝑓 (𝑥; 𝑥)

]ª®¬ ©«1
2

𝑁 𝑓∑︁
𝑓 =1

𝑞 𝑓 tr
[
𝜎3𝛾𝜈𝐷

−1
𝑓 (𝑦; 𝑦)

]ª®¬ . (9)

This expression is similar to the one obtained in periodic boundary conditions, the only difference
being that 𝐷−1 has 24𝑉 × 24𝑉 components.

3.2 Lattice parameters

We use configurations generated by the RC★ collaboration [29] with 3+1 and 1+2+1 flavors of
Wilson quarks with a clover term for both 𝑆𝑈 (3) and𝑈 (1). The 𝑆𝑈 (3) action is O(𝑎)-improved in a
non-perturbative way for QCD ensembles [30], which is valid for QCD+QED ensembles up toO(𝛼),
and the𝑈 (1) action is (so far) tree-level improved. All configurations use C★ boundary conditions
(see Section 3) and are summarized in Table 1. There is one QCD ensemble (A400a00b324) and two
ensembles with dynamically generated QCD+QED fields (A360a50b324 and A380a07b324) at two
values of the fine structure constant; one is close to the physical value and one is larger. The charged
pion mass ranges between approximately 360 MeV and 400 MeV and we have 𝑚𝜋±𝐿 ≈ 2.9 − 3.5.
We use the reference value

√
8𝑡0 = 0.415 fm [31] to obtain physical units. We refer to Ref. [29] for

the details of the generation.

4. Preliminary results

In this section, we first examine the signal-to-noise ratio of the two-point function and then
show values for the vector masses and the HVP. Our analysis is based on the openQ*D program
package [32].

4.1 Signal-to-noise

Using the three ensembles in Table 1 we calculate the two-point function in time-momentum
representation 𝐺 (𝑥0). As illustrated in Figure 1, the relative statistical error for simulating QCD
(A400a00b324) is comparable to the error of simulating QCD+QED at physical 𝛼 (A380a07b324).
On the other hand, simulating QCD+QED at unphysically large 𝛼 (A360a50b324) yields larger
errors than for physical 𝛼. This might be due to a lower pion mass (360 MeV for A360a50b324)
compared to the other ensembles.

1We note that there are two combinations of Wick contractions that contribute to the connected part.
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ensemble A360a50b324 A380a07b324 A400a00b324

flavors 1 + 2 + 1 1 + 2 + 1 3 + 1
𝛽 3.24 3.24 3.24
𝛼𝑅 0.040633(80) 0.007081(19) 0.0

𝑚𝜋± [MeV] 358.6(3.7) 383.6(4.4) 398.5(4.7)
𝑎[fm] 0.05054(27) 0.05323(28) 0.05393(24)

number of used configurations 181 200 200

Table 1: Summary of used ensembles and their parameters, compare Ref. [29] for details. All lattices
have size 323 × 64. Ensembles with 1+2+1 flavor decomposition have degenerate down and strange quark,
ensembles with 3+1 flavor decomposition have degenerate up, down and strange quark. The name of the
ensemble — say A360a50b324 — contains the approximate charged pion mass (360 MeV), the bare fine-
structure constant (0.050) and the coupling (3.24). We denote the renormalized fine-structure constant by 𝛼𝑅
and also tabulate the number of used configurations. Note that we have not used all available configurations,
which is about 2000 for each ensemble. We use the reference value

√
8𝑡0 = 0.415 fm [31] to obtain physical

units.
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Figure 1: Relative error comparison. On the left-hand side, we plot the local-local two-point function of the
electromagnetic current 𝐺 (𝑥0), on the right-hand side we plot the relative errors. The errors for the QCD
ensemble (blue solid line) and the QCD+QED ensemble with physical 𝛼 have comparable relative errors,
whereas the relative error for the QCD+QED ensemble with larger 𝛼 is slightly larger. The number of used
gauge configurations and stochastic sources are 181 and 10, respectively in all three cases.
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ensemble quark 𝑚eff 𝜒2
𝑟

A360a50b324
down/strange 0.262(7) 1.03
up 0.267(8) 0.93

A380a07b324
down/strange 0.265(6) 1.07
up 0.266(4) 0.95

A400a00b324 up/down/strange 0.278(7) 0.94

Table 2: Vector meson mass for the three ensembles: The effective mass 𝑚eff is obtained by performing a
𝜒2-fit of the two-point function Eq. (2) to a single exponential Eq. (10). In the last column, we display the
𝜒2 value per degree of freedom 𝜒2

𝑟 .

4.2 Mass spectroscopy

As the signal-to-noise ratio deteriorates for large times 𝑥0, we introduce a 𝑥0,cut and replace
the two-point function 𝐺 (𝑥0) by a model function for 𝑥0 > 𝑥0,cut. In finite volume the two-point
function 𝐺 (𝑥0) can be written as a sum of exponentials with positive coefficients. We choose to
only consider the leading term in the spectral decomposition for our model function

𝐺 (𝑥0)model = 𝐴𝑒
−𝑚eff𝑥0 , (10)

where 𝑚eff is the effective mass of the corresponding vector meson ground state in lattice units and
𝐴 the decay amplitude.

In order to determine the coefficients𝑚eff and 𝐴, we perform a 𝜒2-fit to the two-point correlation
function in a fit range 𝐼fit where excited states have decayed sufficiently, but where there is still a
clear signal. Since we are interested in the ground state, we apply Gaussian smearing to the sink
and source point to increase the overlap with the ground state. In addition, we apply stout smearing
to the gauge fields. The effective mass 𝑚eff is then extracted by using a 1-parameter logarithmic fit
to the correlator on a subset of 40 configurations. Finally, we use the effective mass as input for
the 1-parameter fit of the decay amplitude to the two-point function (obtained with point sources,
without smearing). In the future we plan to improve the model function by including excited states.

Table 2 shows a compilation of the extracted masses. The statistical error is obtained using
the jackknife method and the systematic error due to choosing a fit range for the vector mass is
estimated by varying the range 𝐼fit. The total error in the table equals the two error contributions
added in quadrature. The mass of the ground state for the charm contribution is not determined
because the model part of the correlator has a negligible contribution to the HVP in that case (see
Figure 2).

4.3 Hadronic vacuum polarization contribution

As a preliminary check we plot the integrand of Eq. (1) in Figure 2. Here we use a combination
of conserved and local currents, i.e., 𝐺 (𝑥0) is obtained from

〈
𝑗conserved
𝑘

(𝑥) 𝑗 local
𝑘

(0)
〉
. The use of

local currents simplifies the calculations, but requires both a multiplicative as well as an additive
renormalization constant [33]. We set the renormalization constant due to the local current to unity.
The results for the HVP contribution of muon 𝑔 − 2 are shown in Table 3.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
1
2

Hadronic vacuum polarization with C* boundary conditions Anian Altherr and Roman Gruber

0 5 10 15 20 25 30
x0

0.0

0.2

0.4

0.6

0.8

1.0

(
/

)2 G
(x

0)
K(

x 0
;m

)

1e 9
up
down/strange
charm

Figure 2: Integrand of the HVP contribution for the A380a07b324 ensemble where we use a conserved-local
two-point function. Points label the actual lattice data, solid lines symbolize interpolation (for 𝑥0 < 𝑥0,cut)
and dashed lines stand for the model function (𝑥0 ≥ 𝑥0,cut) respectively. The systematic error occurring
due to using only a single exponential for the model part is significant for the up contribution (blue) and
down/strange contribution (green); for the charm contribution (black) it is negligible.

ensemble flavor 𝑎HVP
𝜇 × 1010

A360a50b324
up 309(11)
down/strange 77(2)
charm 10.62(11)

A380a07b324
up 331(7)
down/strange 83(2)
charm 9.78(10)

A400a00b324
up/down/strange 319(8)
charm 9.97(9)

Table 3: Results for the HVP contribution. The ensembles employ C★ boundary conditions in spatial
directions, have a pion mass of approximately 360, 380, and 400 MeV respectively, and are simulated on a
lattice with extent 323 × 64 (compare Table 1). We use a combination of conserved and local current and set
the renormalization constant to unity.

4.4 Error contributions

We display the error contributions for the up-quark contribution of the QCD+QED ensemble
with physical 𝛼 in Table 4. An estimate of the statistical Monte Carlo error is obtained using
jackknife. The error occurring in the determination of the vector mass (compare Table 2) affects
the precision of the HVP contribution as does the error on the lattice spacing. The lattice spacing
has been determined in Ref. [29], which is based on the value of the the gradient flow scale 𝑡0
determined in Ref. [31]; the relative error of the lattice spacing turns out to be Δ𝑎

𝑎
= 0.53% (see

7
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variation w.r.t. relative error

statistical
jackknife 1.21 %
err. prop. of vector mass 1.36 %
err. prop. of scale setting 0.92 %

systematic
fit range 0.14 %
model cutoff 𝑥0,cut 0.03 %
excited states 1.20 %

total 2.37 %

Table 4: Error contributions of the up contribution for ensemble A380a007b324. The row ’jackknife’
quantifies the error due to statistical fluctuations in the Monte Carlo simulation. The second row quantifies
the error propagation of the uncertainty on the vector mass (see Section 4.2) and the third row the error
propagation of the uncertainty on the lattice spacing. The error due to selecting a fit range (for the vector
mass and the amplitude), and a model cutoff 𝑥0,cut are quantified by varying these parameters, the error due to
neglecting excited states is estimated by using a bounding method. We do not assess continuum extrapolation
nor chiral extrapolation, neither do we estimate finite-size effects.

Table 1). We note that the gradient flow scale has only been determined for QCD ensembles, a
scale setting in full QCD+QED remains to be worked out; see Ref. [12]. The contribution to the
uncertainty on the HVP due to error propagation of the uncertainty in scale setting is expected to
be roughly 1.8Δ𝑎

𝑎
(see Ref. [26, Appendix B.2]), which agrees with our findings. In addition to

statistical errors, we have systematic errors. Due to the exploratory nature of this proceedings we
do not carry out a continuum extrapolation nor a chiral extrapolation to physical meson masses.
Neither do we assess finite-size effects. There are further systematic errors due to the model part.
To determine the vector mass and amplitude in Eq. (10) we select a fit range and a cutoff 𝑥0,cut. We
estimate the error due to that choice by varying the cutoff and the fit range around our chosen value.
These errors are small compared to the error that arises due to neglecting excited states. We estimate
the contribution of excited states by bounding the correlator from above and estimating the error
as the difference between the bounds [4]. In the future we plan to reduce the error contributions
individually, see Section 5.

5. Conclusion and outlook

We have presented the first calculation of the connected HVP contribution to the muon 𝑔 − 2
using C★ boundary conditions. Three different ensembles are used, a QCD ensemble and two
QCD+QED ensembles with different values of the fine structure constant. The noise level for the
ensemble with physical 𝛼 is comparable to the ensemble with QCD only, whereas for larger 𝛼 the
noise level increases. There remain a couple of open questions that we plan to address in the future.

First, isospin-breaking effects have not been addressed in the QCD ensemble A400a00b324.
There are two methods to deal with isospin-breaking effects — a perturbative or a stochastic
approach. In the perturbative approach, we expand the QCD+QED action around the isospin-
symmetric point (𝛼 = 0, 𝑚𝑢 − 𝑚𝑑 = 0) in 𝛼 and 𝑚𝑢 − 𝑚𝑑 and evaluate the correlation function
obtained in that way [34, 35]. On the other hand, QED fields can be added stochastically by

8
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multiplying QCD gauge links with random 𝑈 (1)-phases [35, 36]. We plan to investigate both
approaches.

Second, finite-size effects for the HVP can be quantified using the Hansen-Patella method
[37], where different orders of finite-volume effects are generated by powers of 𝑒−𝑚𝜋𝐿 with 𝑚𝜋

the pion mass, and 𝐿 the linear lattice extent. For periodic boundary conditions the leading-order
term is O(𝑒−𝑚𝜋𝐿) whereas for C★ boundary conditions this leading order vanishes and finite-size
effects are of the order O(𝑒−

√
2𝑚𝜋𝐿) [38]. In addition, there are power-law finite-size effects due to

QED, which are expected to be smaller compared to periodic boundary conditions (see for example
Refs. [22] for corrections to baryon masses).

Third, as seen in Table 4, we need to implement additional variance-reduction methods to
achieve a sub-percent precision. Firstly, we plan to increase the number of configurations and
number of sources to decrease the statistical error and to increase the precision of the vector mass
determination. In addition, low-mode averaging [39, 40] exploits the structure of the Dirac operator
and reduces the variance that stems from the low modes. Regarding ensemble generation, multi-
level Monte Carlo [41] reduces the variance in the correlators exponentially in the distance. We plan
to consider more sophisticated model functions than single exponentials; this will further decrease
the error due to the model part.
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