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Intermediate window observable for the muon g-2 from
overlap valence quarks on staggered ensembles
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The Budapest-Marseille-Wuppertal collaboration computed the leading hadronic vacuum polar-
ization contribution to the anomalous muon magnetic moment with unprecedented accuracy on
the lattice. The result was obtained using staggered fermions. Here we present an improved cross-
check of the staggered result for the intermediate window observable using a mixed action setup:
overlap valence quarks on staggered sea ensembles. We focus on the light connected contribution.
Details of the overlap fermion formulation and of the methods used for the measurements of the
hadronic vacuum polarization are described. We present first results for two different setups on
lattices with a spatial extent of 3 fm.
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a [fm] L T # conf
0.1315 24 48 716
0.1116 28 56 887
0.0952 32 64 1110
0.0787 40 80 923
0.0640 48 96 577

Table 1: Summary of ensembles used in the current study.

1. Introduction

Possible discrepancy between theoretical and experimental determination of the muon anoma-
lous magnetic moment would indicate the existence of new physics and is one of the most actively
discussed topics nowadays [1]. Theoretical estimations based on the White Paper [2] are in 4.2 𝜎

difference with the combined experimental results obtained recently at Fermilab [3] and previously
at BNL[4]. On the other side, lattice calculation of the Budapest-Marseille-Wuppertal collaboration
[5] for the leading order Hadron Vacuum Polarization (HVP) contribution to the anomalous muon
magnetic moment significantly reduces tension between theory and experiment, making the current
status of the muon 𝑔−2 problem more puzzling. In this proceeding we discuss the crosscheck of the
results of [5], which used staggered fermion discretization, with the help of the overlap fermions,
which possess exact chiral symmetry on the lattice.

2. Details of numerical calculations

Accurate determination of the HVP contribution to the anomalous magnetic moment requires
careful consideration of a plenty of systematic uncertainties [6]. Analogous calculation with the
help of the overlap fermions requires huge computer resources and is beyond currently available
supercomputer resources. Instead, for the cross-check we concentrate only on one contribution
to the anomalous magnetic moment 𝑎𝜇: light connected intermediate window observable 𝑎

𝑙,win
𝜇 .

Comparison is performed in the isospin symmetric point. We also restrict our study to the lattices
with spatial volume 𝐿 ≈ 3 fm and we compare the continuum extrapolation obtained with staggered
and overlap fermions. A short summary of the ensembles, used in the current analysis is presented
in Tab. 1.

Ensembles were generated with 𝑁 𝑓 = 2 + 1 + 1 staggered 4-stout action, which is used in the
analysis of [5]. For the crosscheck of staggered discretization we used overlap fermions [7] with
2 steps of HEX smearing [8] as valence quarks1:

𝐷ov =
1
2
(1 + 𝛾5 sgn(𝛾5𝐷w(−𝑚w)))

𝐷ov(𝑚ov) =
(
1 − 𝑚ov

2𝑚w

)
𝐷ov +

𝑚ov

2𝑚w

(1)

1For simplicity we omit here and later lattice spacing 𝑎.
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Figure 1: Ratio of three-point to two-point correlation functions 𝜁 (𝑡) from Eq. (3) as a function of time 𝑡.
Lattice spacing 𝑎 = 0.1116 fm, temporal lattice extent 𝑇 = 56.

where 𝐷w(−𝑚w) is the Wilson Dirac operator with large negative mass −𝑚w. In this study we used
𝑚w = 1.3. For the overlap Dirac propagator 𝐷ov we applied 𝑂 (𝑎) improvement:

𝐷−1
ov (𝑚ov) → (1 − 𝐷ov) 𝐷−1

ov (𝑚ov). (2)

Mixed action setup requires tuning of the parameters of the valence quarks to match the sea
quarks. In order to tune the quark mass of the overlap fermions we used pion mass, determined
in both discretizations. We used two different prescriptions, matching overlap pion mass either to
the Goldstone boson pion mass (GB), or to the root mean squared pion mass (RMS) determined
with staggered fermions. We initially performed simulations with 4 values of overlap quark mass:
𝑚ov = 0.002, 0.005, 0.010, 0.020 and interpolated the overlap pion mass using the formula: 𝑚𝜋,ov =

𝐴𝑚𝐵
ov +𝐶𝑚2

ov with free parameters 𝐴, 𝐵 and 𝐶. This expression is able to capture partial quenching
effects [9].

For the measurements of the hadron vacuum polarization tensor with overlap fermions we used
the local current definition. As a consequence, the current has to be renormalized. Renormalization
factor 𝑍𝑉 is determined by measuring the pion electric charge. To this end we computed the
following ratio of three- and two- point correlation functions:

𝜁 (𝑡) = ⟨𝑃(𝑇/2)𝑉4(𝑡)𝑃̄(0)⟩
⟨𝑃(𝑇/2)𝑃̄(0)⟩

, (3)

where 𝑃(𝑡) =
∑

®𝑥 (𝜓̄2𝛾5𝜓1) (®𝑥, 𝑡), 𝑃̄(𝑡) =
∑

®𝑥 (𝜓̄1𝛾5𝜓2) (®𝑥, 𝑡) is the pseudoscalar density, 𝑉𝜇 (𝑡) =∑
®𝑥 (𝜓̄1𝛾𝜇𝜓1) (®𝑥, 𝑡) is the local vector current expressed in terms of valence overlap quark fields 𝜓1

and 𝜓2. In the case of the conserved current 𝜁 (𝑡) equals to 1/2 for 0 < 𝑡 < 𝑇/2 and is −1/2 for
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Figure 2: Schematic visualization of eigenpairs of the overlap operator 𝐷ov and 𝐻2
ov = 𝐷

†
ov𝐷ov (𝐻 = 𝛾5𝐷ov).

𝑇/2 < 𝑡 < 𝑇 . For other current discretizations we can determine the renormalization factor 𝑍𝑉

from matching 𝜁 (𝑡) to ±1/2 at some physical distance. In Fig. 1 we present the typical dependence
of 𝜁 (𝑡) on the position 𝑡 of the overlap local vector current insertion, determined on the ensemble
with lattice spacing 𝑎 = 0.1116 fm and lattice size 283 × 56. In practice we used the following
symmetrized combination to determine 𝑍𝑉 : 𝑍𝑉 = [𝜁 (𝑇/4) − 𝜁 (3𝑇/4)]−1.

3. Low-mode averaging and overlap fermions

One way to improve the signal-to-noise ratio in lattice calculations of fermion observables is
low-mode averaging (LMA) [5, 10]. Below we summarize the details of our implelentation of the
LMA for the overlap Dirac operator2. The standard way to utilize LMA is based on the separation
of the propagator 𝐷−1 into two parts:

𝐷−1 = 𝐷−1
𝑒 + 𝐷−1

𝑟 , (4)

where 𝐷−1
𝑒 corresponds to the inversion of the Dirac operator on the low modes |𝜆𝑖⟩ of the Dirac

operator, 𝐷 |𝜆𝑖⟩ = 𝜆𝑖 |𝜆𝑖⟩, as 𝐷−1
𝑒 = 1

𝜆𝑖
|𝜆𝑖⟩⟨𝜆𝑖 |, and 𝐷−1

𝑟 correspond to the rest part, 𝐷−1
𝑟 =

𝐷−1(1 − |𝜆𝑖⟩⟨𝜆𝑖 |). In this case, the two point correlation function 𝐶 can be separated into three
terms:

𝐶 = 𝐶ee + 𝐶re + 𝐶rr, (5)

and eigen-eigen part 𝐶ee can be calculated exactly, leading to significant noise reduction.
To calculate the low modes |𝜆𝑖⟩ of the Dirac operator 𝐷, we first calculate the low modes of

the Hermitian operator 𝐻2 = 𝐷†𝐷, where 𝐻 = 𝛾5𝐷. Note that, for overlap Dirac fermions, the
operator 𝐻2 commutes with 𝛾5. Thus, except for zero-modes (and large eigenvalues 𝜆 = 1 which
are irrelevant for LMA), eigenvectors come in degenerate pairs of opposite chirality [11]. Zero
modes can be only of one chirality, which corresponds to the topological charge determined from
the index of the overlap operator. If 𝜆2

𝑖
, |𝜆𝑖⟩ is the eigenpair of 𝐷†𝐷 of chirality 𝜒 = ±1, then it

corresponds to the eigenpairs 𝜆̄𝑖 , |𝜆̄𝑖⟩ of the Dirac operator 𝐷 itself [11]:

𝜆̄𝑖 = 0, |𝜆̄𝑖⟩ = |𝜆𝑖⟩, if 𝜆𝑖 = 0,

𝜆̄𝑖 = 𝜆2
𝑖 ± 𝑖𝜆𝑖

√︃
1 − 𝜆2

𝑖
, |𝜆̄𝑖⟩ ∼ 𝐻 |𝜆𝑖⟩ − 𝜒𝜆̄𝑖 |𝜆𝑖⟩, if 𝜆𝑖 ≠ 0,

(6)

2Note that for simplicity in this section we write all expressions for the massless overlap Dirac operator 𝑚ov = 0.
Extension to the massive case 𝑚ov ≠ 0 is straightforward.
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𝑡0/2 𝑡0 2𝑡0
Wilson 0.75 0.66 0.62

Symanzik 0.71 0.62 0.62
Iwasaki 0.80 0.71 0.76
DBW2 0.60 0.60 0.60

Table 2: Typical correlation between the sign of the topological charge determined by the index of the overlap
Dirac operator and with the help of the Gradient Flow with different gauge actions (Wilson, Symanzik, Iwasaki
and DBW2) and at various GF times, given in units of 𝑡0 scale. Lattice spacing is 𝑎 = 0.0787 fm, lattise size
is 403 × 80. The correlation was determined on a small subset of 48 configurations.

Note that each zero mode of 𝐷†𝐷 corresponds to one zero mode of 𝐷, which is of the same
chirality, while every non-zero (and 𝜆𝑖 ≠ 1) mode of 𝐷†𝐷 give two modes of 𝐷. In Fig. 2
we present the schematic visualization of the eigenpairs of 𝐷 and 𝐻2. In order to determine
low modes of the operator 𝐷 one needs to know the low modes of 𝐷†𝐷 of the chirality, that
has zero modes, if there are any. Note also that for overlap Dirac operator, if we work in one
chirality sector 𝜒 = ±1 the application of the 𝐷†𝐷 on a given vector can be rewritten as 𝐷†𝐷 |𝑣⟩ =
1
4 (2 + (𝛾5 + 𝜒) sgn(𝛾5𝐷w)) |𝑣⟩, which contains only one application of the Wilson Dirac sign
function, thus making it just as fast as a single application of 𝐷.

If one knew from the beginning which chirality sector contains zero modes of the overlap Dirac
operator 𝐷, then one could calculate eigenpairs only in this sector. Otherwise one has to choose
one sector and check afterwards for zero modes. In the case that it does not contain zero modes,
one should recalculate the eigenpairs in the opposite sector. To decrease the required computer time
one needs to make a good guess of the sign of the topological charge, which is based on the index of
the overlap operator. A good proxy for this quantity could be another definition of the topological
charge. We have found that the Gradient-Flow based definition of the topological charge provides a
good approximation to this quantity, being also a very fast procedure, in comparison to the overlap
eigenvalues determination. We have checked several variants of the Gradient Flow(GF), based on
different gauge actions, used for the smoothing procedure. In Tab. 2 we present typical correlation
between sign of the topological charge determined from the GF with different gauge actions and
topological charge definition based on the index of the overlap Dirac operator. We have found, that
the largest correlation is given by the GF with Iwasaki gauge action and at a GF time 𝑡 = 𝑡0/2, where
𝑡0 is the standard GF scale [12]. Note that a somewhat similar conclusion about the Iwasaki gauge
action was found in [13]. We would like to stress here that the exact matching of this procedure with
the overlap topological charge or its sign is not needed. After the initial guess and the calculation
of the overlap modes, we check that the selected chirality sector contains zero modes and if it does
not, we recalculate the low modes in the other chirality sector.

4. Results

In our calculations, we typically compute 512 low modes of the 𝐻2 operator, which correspond
to 1024 − 𝑛zero modes of the overlap Dirac operator 𝐷, where 𝑛zero is the number of zero modes.
For the calculation of the rest-rest and the rest-eigen part we used 64 random sources.
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Figure 3: Continuum extrapolation of the light intermediate window observables determined on 𝐿 ≈ 3 fm
ensembles with staggered fermions(red) and in a mixed overlap-staggered action setup with RMS pion mass
matching(green) and GB pion mass matching(blue). The data for the GB pion mass matching are blinded by
a factor 𝛼 close to 1.

In Fig.3 we present the continuum extrapolation of the light connected intermediate window
observable 𝑎

𝑙,win
𝜇 determined on our 𝐿 ≈ 3 fm ensembles with the staggered fermions and overlap

fermions. For the RMS pion mass matching the results correspond to the previous results [5] (with
some increase in statistics). We also present first preliminary results obtained with GB pion mass
matching for two coarse lattice spacings. These new data are blinded by a random factor 𝛼, which
is close to 1. For the RMS pion matching the continuum extrapolation of the window observable
with a simple ∼ 𝑎2 cutoff dependence describe the lattice data well and results for the staggered and
overlap fermions are in agreement. The data for the overlap fermions with the GB pion matching
are in the same ballpark as staggered and overlap results with RMS matching. However, the precise
continuum extrapolation cannot be performed yet and is planned in the future, with the overlap
results on finer lattices.
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