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The electromagnetic coupling constant, 𝛼, is one of the fundamental parameters of the Standard
Model (SM). Its value at the Z boson mass, 𝛼(𝑀𝑍 ), is of particular interest as it enters electroweak
precision tests. When running 𝛼 from low energies up to the Z mass, five orders of magnitude
in precision are lost. This makes it one of the least well determined parameters of the SM at that
scale. The largest source of error comes from non-perturbative hadronic effects in the low energy
region. These non-perturbative effects can be determined from ab-initio calculations in lattice
QCD. At higher energies, needed to match onto QCD perturbation theory, discretization errors
become large. In addition, the hadronic vacuum polarization receives logarithmically-enhanced
cutoff effects [1, 2] which render the continuum extrapolation more difficult. To better control
this extrapolation at higher energies, we test a number of improvement procedures based on lattice
perturbation theory. To illustrate their effect, we present a preliminary analysis of the light quark,
connected contribution to the Adler function at Euclidean 𝑄2 = 5 GeV2. The lattice results are
obtained using simulations with 2 + 1 + 1 flavors of staggered fermions at physical values of the
quark masses.
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1. Introduction

One approach to search for physics beyond the Standard Model is at the intensity frontier, i.e.
by increasing the luminosity rather than the energy scale of experiments. Since there is still no
conclusive direct or indirect evidence for new physics, we expect its effects to be very small.
Detecting a deviation from the Standard Model requires both the theoretical prediction and the
experimental measurement to be determined extremely precisely. On the theoretical side, hadronic
effects often limit the precision, thus requiring a reliable description of these low energy QCD
processes.

One of these precision quantities is the electromagnetic coupling constant, 𝛼, whose value at
the Z-mass scale is an important input in electroweak precision tests of the SM [3]. While the world
average of 𝛼 at the scale of the electron mass is known to an amazing fraction of a part per billion
uncertainty [4], it loses five orders of magnitude in precision when it is run up to 𝑀𝑍 [5]. This
makes 𝛼(𝑀𝑍 ) one of the least well determined input parameters of the SM. Future colliders will
significantly reduce the uncertainties on 𝛼(𝑀𝑍 ) obtained indirectly via fits to electroweak precision
observables. In fact, the uncertainties on the direct calculation of 𝛼(𝑀𝑍 ) will have to be reduced
by a factor of two to fully leverage these future measurements in the search for new fundamental
physics [5].

2. The running of the electromagnetic coupling

The full propagator of a photon with momentum 𝑞 is given by one-particle irreducible insertions
of the self-energy tensor, denotedΠ`a (𝑞), which is the vacuum expectation value of the time ordered
product of the correlator of two electromagnetic currents. By Lorentz and gauge invariance this
vacuum polarization tensor can be decomposed into a Lorentz invariant function and a Lorentz
structure which is transverse and proportional to two powers of 𝑞,

Π`a (𝑞) = 𝑖

∫
𝑑4𝑥 𝑒𝑖𝑞 ·𝑥

〈
0|𝑇{𝐽` (𝑥)𝐽a (0)}|0

〉
=

(
𝑞`𝑞a − 𝑔`a𝑞

2
)
Π

(
𝑞2
)
, (1)

with 𝐽` (𝑥) ≡
∑
𝑓 𝑞 𝑓 𝑓 (𝑥)𝛾` 𝑓 (𝑥), where 𝑓 = {𝑒, `, 𝜏, 𝑢, 𝑑, 𝑠, 𝑐, 𝑏, 𝑡} with electric charges 𝑞 𝑓 . After

resummation of the one-particle irreducible diagrams one can define the effective electromagnetic
coupling:

𝛼(𝑞2) = 𝛼(0)
1 − Δ𝛼(𝑞2)

, with Δ𝛼(𝑞2) = 4 𝜋 𝛼Π̂(𝑞2) = 4 𝜋 𝛼

(
Π(𝑞2) − Π(0)

)
. (2)

It is convenient to split the contributions to the running into a leptonic part, the hadronic contribution
from the five lightest quarks and the contribution from the top quark,

Δ𝛼(𝑞2) = Δ𝛼lep(𝑞2) + Δ𝛼
(5)
had (𝑞

2) + Δ𝛼top(𝑞2) . (3)

While both the leptonic contribution and the contribution from the top quark can reliably be
calculated in perturbation theory, the hadronic vacuum polarization function (HVP) receives large
non-perturbative contributions below a scale of a few GeV, making it inaccessible to known analytic
methods. Due to the complications in computing this hadronic contribution it dominates the
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uncertainty in the running of 𝛼. The traditional way of obtaining the HVP in this non-perturbative
regime is to use measurements of the 𝑒+𝑒− → hadrons cross section as a function of the centre-
of-mass energy and a dispersion relation [6, 7]. However, for space-like momenta, the HVP is
accessible to ab-initio calculations in lattice QCD and thus provides a complementary approach
which does not depend on cross-section data [8–10]. This has become particularly important since
the recent determination of the muon 𝑔 − 2 by the BMW collaboration, for which the predictions
obtained via the data-driven approach and from the lattice differ [9].

3. The hadronic contribution to the running of 𝛼 from lattice QCD

On the lattice, the quantity that we are interested in is the Euclidean vacuum polarization tensor
𝑄2 = −𝑞2

Π`a (𝑄) =
∫

𝑑4𝑥 𝑒𝑖𝑄·𝑥 〈𝐽` (𝑥)𝐽a (0)〉 = (
𝑄`𝑄a − 𝛿`a𝑄

2
)
Π

(
𝑄2

)
, (4)

where the last equality follows from using O(4) and gauge invariance. However, equation (4)
does not hold in finite volume – the VP is fully transverse only in infinite volume and infinite
time. As emphasized in [11], Π̂(𝑄2) can be obtained in the time-momentum representation by
a zero-momentum-projected correlator multiplied by a 𝑄2-dependent kernel function. We hence
define

Π̂(𝑄2) ≡ Π(𝑄2) − Π(0) = 2𝑎
∑︁
𝑡

Re
[
𝑒𝑖𝑄𝑡 − 1

𝑄2 + 𝑡2

2

]
Re𝐶 (𝑡) ∀𝑄∈R , (5)

with

𝐶 (𝑡) = 𝑎3

3

3∑︁
𝑖=1

∑︁
®𝑥
⟨𝐽𝑖 (𝑥)𝐽𝑖 (0)⟩ = 𝐶𝑢𝑑 (𝑡) + 𝐶𝑠 (𝑡) + 𝐶𝑐 (𝑡) + 𝐶disc(𝑡) , (6)

where we have flavor decomposed the electromagnetic current correlator 𝐽`. This has the advantage
that the very different statistical and systematic uncertainties of the various contributions can be
addressed separately.

While formally Eq. (5) can be used to define Π̂(𝑄2) for any 𝑄 ∈ R, we are limited at large
𝑄 by the momentum cutoff on the lattice, and at small 𝑄 the observable will feel the finite size
of the lattice. At those large distances, finite-volume and, since we are using staggered quarks,
taste-breaking effects will play a role. Due to the subtraction of Π(0) the HVP mixes, for large 𝑄2,
very different scales. Hence, in this exploration of systematic effects, we instead consider the Adler
function [12],

𝐷 (𝑄2) ≡ 12𝜋2𝑄2 dΠ̂(𝑄2)
d𝑄2 = 24𝜋2𝑎

∑︁
𝑡

d𝑘 (𝑡, 𝑄2)
d𝑄2 𝐶 (𝑡) = 𝑎

∑︁
𝑡

𝑘𝐷 (𝑡, 𝑄2)𝐶 (𝑡) . (7)

The advantage is that, for massless quarks, 𝑄2 alone determines whether the Adler function is a
short- or long-distance quantity. In what follows we will focus on the challenges which show up in
𝐷 (𝑄2) for large Euclidean 𝑄2

1.

1Concerning the challenges and possible improvements at large distances, see for instance the supplementary material
in [9].
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Figure 1: Light contribution to 𝐷 (5 GeV2) as a function of (𝑎𝑄)2 at LO in staggered, lattice perturbation
theory. The pink points correspond to the lattice spacings available in our 4-stout ensembles [9], blue points
are additional, smaller lattice spacings. The green line is the continuum value known analytically at LO.

4. Challenges at short distances: discretization errors

At large values of 𝑄2, discretization effects become important, eventually spoiling the contin-
uum extrapolation of the Adler function. In addition, as recently shown in [1, 2], the contribution of
the light valence quarks of mass 𝑚𝑙 to the Adler function receives logarithmically-enhanced O(𝑎2)
lattice artefacts, even at leading order (LO) in lattice perturbation theory,

𝐷

(
𝑄2, 𝑎

)
= 𝐷

(
𝑄2

) {
1 + Γ0(𝑎𝑄)2 ln(𝑎𝑄)2 + O

[
(𝑎𝑄)2, (𝑎𝑚𝑙)2]} , (8)

where 𝐷
(
𝑄2) is the value of the Adler function in the continuum and Γ0 is a constant. These

logarithmically-enhanced cutoff effects arise from small separations between the two currents;
𝐷 (𝑄2) is not an on-shell quantity. Note also that perturbative corrections to the logarithmically-
enhanced term, of the form 𝛼𝑛𝑠 (1/𝑎) (𝑎𝑄)2 ln(𝑎𝑄)2, are of order 𝛼𝑛−1

𝑠 (1/𝑎) (𝑎𝑄)2 because 𝛼𝑠 ∼
−1/ln(𝑎ΛQCD) and are therefore no longer logarithmically enhanced. In Figure 1 we plot the
light contribution of the Adler function at 𝑄2 = 5 GeV2 at LO in staggered, lattice perturbation
theory as a function of the lattice spacing squared. Clearly, a naive extrapolation using a simple
linear function in (𝑎𝑄)2 would completely miss the continuum limit. Even worse, the logarithmic
term becomes important for small lattice spacings and the function turns around. Note also that
this turnover is shifted towards smaller 𝑎 for larger values of 𝑄2. Hence, in order to ensure a
reliable continuum extrapolation even at large 𝑄2, it is crucial to have an analytic understanding
of the asymptotic dependence on the lattice spacing. For the leading-order coefficient of the
logarithmically-enhanced discretization error in staggered, lattice perturbation theory we obtain

Γ0 = − 1
30

. (9)

4.1 Removal of discretization effects at leading order in 𝛼𝑠

One way to tackle large cutoff effects consists in removing some of the discretization errors
by improving the data using lattice perturbation theory. Hence, we define the LO improved Adler
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function,

�̃� (𝑄2, 𝑎) ≡ 𝐷 (𝑄2, 𝑎) + 𝐷0(𝑄2, 0) − 𝐷0(𝑄2, 𝑎) , (10)

where 𝐷0(𝑄2, 0) and 𝐷0(𝑄2, 𝑎) are the Adler function in the continuum and in staggered, lattice
perturbation theory at LO, respectively. This should cure the data from the leading discretization
errors at large momenta where perturbation theory works well. More importantly, it removes the
leading, logarithmically-enhanced discretization errors, up to small 𝛼𝑠 (𝑄2) suppressed terms. We
find for the connected zero-momentum, current correlator at LO in staggered, lattice perturbation
theory

𝐶0(𝑡, 𝑎) =
𝑛𝑐𝑞

2
𝑓

3

∑︁
𝑖

∫ 𝜋

−𝜋

𝑑 ®𝑝
(2𝜋)3

cos(𝑎𝑝𝑖)2𝑒−2𝐸𝑡

4 ¤𝐸2

[
�̂�2 − 𝑝2

𝑖

(
1 + (−1)𝑡

) ]
, (11)

with 𝑝𝑖 = sin(𝑎𝑝𝑖)/𝑎, �̂� = sinh(𝑎𝐸)/𝑎, 𝐸 = arcsinh(𝑎
√︃∑

𝑖 𝑝
2
𝑖
+ 𝑚2)/𝑎 and ¤𝐸 = �̂�

√︁
1 + (𝑎�̂�)2.

This expression can be decomposed into a contribution which approaches the continuum result
in the limit 𝑎 → 0 and a part which is oscillating around this solution (the conserved current is
time-local). The disconnected component vanishes at leading order. The Adler function in infinite
volume and infinite time can then be obtained from the modified Fourier transform of Eq. (7)

𝐷0(𝑄2, 𝑎) = 2
∞∑︁
𝑡=0

𝑘𝐷 (𝑄2, 𝑡)𝐶0(𝑡, 𝑎) , (12)

where the sum in 𝑡 can be calculated analytically. We find

𝐷0(𝑄2, 𝑎) = −2
3
𝑛𝑐𝑞

2
𝑓

∑︁
𝑖

∫ 𝜋

−𝜋

𝑑 ®𝑝
(2𝜋)3

cos(𝑎𝑝𝑖)2

4 ¤𝐸2 ×

©«�̂�2


¤𝐸 sin2

(
𝑎𝑄

2

)
𝑎�̂�2(𝑎𝑄)2 (−2(𝑎�̂�)2 + cos(𝑎𝑄) − 1

) + ¤𝐸 sin(𝑎𝑄)
2𝑄

(
−2(𝑎�̂�)2 + cos(𝑎𝑄) − 1

)2


−𝑝2

𝑖

[ (
2(𝑎�̂�)2 + 1

)
sin2(𝑎𝑄)

𝑎 ¤𝐸 (𝑎𝑄)2 (−8(𝑎 ¤𝐸)2 + cos(2𝑎𝑄) − 1
) + 4𝑎 ¤𝐸

(
2(𝑎�̂�)2 + 1

)
sin(2𝑎𝑄)

𝑎𝑄
(
−8(𝑎 ¤𝐸)2 + cos(2𝑎𝑄) − 1

)2

])
.

(13)

To investigate whether Eq. (13) reproduces the discretization errors in our simulations for large
𝑄2, we depict in Figure 2 the cutoff effects in the integrand of 𝐷𝑙 (𝑄2, 𝑎) as a function of Euclidean
time, i.e. the integrand is convoluted by a so-called window function,

𝐷win(𝑄2, 𝑎, 𝑡1) ≡
∫

d𝑡 𝑤(𝑡; 0, 𝑡1) 𝐶 (𝑡) 𝑘 (𝑡, 𝑄2) , (14)

with 𝑤 (𝑡; 0, 𝑡1) = (tanh [(𝑡 − 𝑡1) /Δ] − tanh [𝑡/Δ]) /2 and with Δ = 0.15 fm. We plot this window
quantity for two of our 4-stout simulations (solid line), taking the difference between the finest lattice
and the coarsest lattice. These discretization errors are compared to those obtained using lattice
perturbation theory for the same lattice parameters (dotted curves). For small 𝑄2, the discretization
errors are small in general but they increase at large distances due to taste-breaking effects. Clearly,
for times longer than 0.3 fm Eq. (13) fails to describe the discretization errors properly. However, for
large 𝑄2, discretization errors become large, they come from short distances and saturate quickly.
In fact, here, LO lattice perturbation theory describes the discretization errors to better than 10%
for 𝑄2 = 10 GeV2.
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Figure 2: Light contribution to 𝐷 (𝑄2) in a time window [0 . . . 𝑡1] fm. We plot the difference between a
fine (𝑎 = 0.064 fm) and a coarse (𝑎 = 0.118 fm) lattice, in comparable volumes. The solid lines are obtained
from the simulation. The dotted curves are the predictions from leading-order lattice perturbation theory.

4.2 Removal of an additional discretization effect

Let us factorize the expansion of the Adler function as in Eq. (8)

𝐷

(
𝑄2, 𝑎

)
= 𝐷

(
𝑄2

) {
1 + Γ0(𝑎𝑄)2 ln

(
𝑎𝑄

2𝜋

)2
+ O

(
(𝑎𝑄)2

)}
, (15)

with

𝐷

(
𝑄2

)
= 𝐷0

(
𝑄2

)
+ 𝐷1

(
𝑄2

)
𝛼𝑠

(
𝑄2

)
+ O

(
𝛼2
𝑠

)
, (16)

where 𝐷0(𝑄2) and 𝐷1(𝑄2) are the LO and one-loop Adler function in the continuum, respectively
[13]. Since Γ0 and 𝐷1(𝑄2) are known, by expanding equation (15), we find that we can define
an additionally subtracted �̃� (𝑄2) which will have yet formally smaller logarithmically-enhanced
discretization errors,

�̄�

(
𝑄2, 𝑎

)
= �̃�

(
𝑄2, 𝑎

)
− (𝑎𝑄)2 ln

(
𝑎𝑄

2𝜋

)2
Γ0𝐷1

(
𝑄2

)
𝛼𝑆

(
𝑄2

)
, (17)

where 𝐷0
(
𝑄2, 𝑎

)
is the leading-order improved Adler function defined in Eq. (10). After re-

moval of this additional discretization error, logarithmically-enhanced discretization errors begin
at O

(
𝛼2
𝑠 (𝑄2) (𝑎𝑄)2 ln(𝑎𝑄)2) and O

(
(𝑎𝑄)4 ln(𝑎𝑄)2) and should be small. All the other terms are

regular and begin at O
(
(𝑎𝑄)2) . In Figure 3 we plot the continuum extrapolation of 𝐷𝑙 (5 GeV2).

Two types of improvements are shown: one where the leading logarithmically-enhanced cutoff
effect is removed and one where we also subtract the additional mixed term in eq. (17). As a fit to
the unimproved lattice results shows (dark red line), the logarithmic coefficient is close to the one
expected from lattice perturbation theory, see Eq. (9). Removing the logarithmic term at leading
order divides this coefficient by a factor of ∼five (violet line), removing the additional discretization
effect reduces the logarithmic cutoff effect further: it vanishes within errors (orange line).
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Figure 3: Continuum extrapolation of 𝐷𝑙 (5 GeV2) with the results from our 4-stout ensembles [9]. The
lattice results have been blinded by a random factor between 1.01 and 0.99. The dark red points correspond
to unimproved data, for the purple line we have removed the leading logarithmically-enhanced cutoff effect
and from the orange datapoints we have removed the additional mixed term. We also depict the logarithmic
coefficient Γ0, cf. (15), obtained from a fit to the data, using the fit function in the title.

4.3 Taking the continuum limit using the lattice momentum �̂�

As can be observed from Figure 1, since the logarithmically-enhanced cutoff effect becomes
important for small values of (𝑎𝑄)2, the asymptotic form of the function changes direction and
approaches the continuum value from above. In order to reliably capture this turnover behaviour,
results at small enough values of (𝑎𝑄)2 are needed. Reassuringly, as discussed in the previous
paragraph, for 𝑄2 = 5 GeV2, the logarithmic term that we obtain by a fit to the data is close to the
value expected from lattice perturbation theory. One can further test that the leading logarithmically-
enhanced discretization error is correctly picked up in fits to the lattice results by modifying the
kernel function, as we discuss now.

A bosonic propagator on the lattice can be written in terms of a momentum �̂� = 2/𝑎 sin (𝑎𝑄/2).
Thus, on the lattice one can define the Adler function as

𝐷

(
�̂�2

)
= �̂�2 𝜕Π̂(�̂�2)

𝜕�̂�2
= 2

∫ ∞

0
d𝑡

d𝑘 (�̂�, 𝑡)
d�̂�2

𝐶 (𝑡) , 𝑘 (�̂�, 𝑡) = cos(𝑄𝑡) − 1
�̂�2

+ 𝑡2

2
. (18)

Interestingly, the leading-order coefficient in front of the O(𝑎2) logarithmically-enhanced cutoff
effect changes, as now also 𝑘 (�̂�, 𝑡) receives O(𝑎2) corrections. Indeed, expanding in powers of 𝑎2,
we find (again, neglecting mass discretization effects)

𝐷0, 𝑓

(
�̂�2, 𝑎

)���
𝑎2

=

∫
d𝑡

(
𝐶0, 𝑓 (𝑡)

��
𝑎2

d𝑘 (�̂�, 𝑡)
d�̂�2

����
𝑎0

+ 𝐶0, 𝑓 (𝑡)
��
𝑎0

d𝑘 (�̂�, 𝑡)
d�̂�2

����
𝑎2

)
. (19)

Computing the relevant integrals analytically we obtain

𝐷0, 𝑓

(
�̂�2, 𝑎

)���
𝑎2

𝑎→0−−−−→
𝑚→0

𝑛𝑐𝑞
2
𝑓 �̂�

2 ln
(
𝑎�̂�

2𝜋

)2 (
− 1

12
+ 1

20
+ 1

12

)
, (20)
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Figure 4: Light contribution to 𝐷0 (5 GeV2) as a function of (𝑎𝑄)2 in leading-order lattice perturbation
theory, employing 𝑘 (𝑄, 𝑡) (pink) and 𝑘 (�̂�, 𝑡) (violet) in eq. (5). The pink points correspond to the lattice
spacings available from our 4-stout ensembles [9], blue points are additional smaller lattice spacings. The
green line is the continuum value. By employing 𝑘 (�̂�, 𝑡) the continuum value is approached from below.

where the first discretization error is common to all staggered current correlators, the second one is
specific to the conserved current and the last one originates from the kernel function. This is what
can be observed in Figure 4, where 𝐷𝑙 (5 GeV2) in lattice perturbation theory employing 𝑘 (𝑄, 𝑡)
(pink) and 𝑘 (�̂�, 𝑡) (violet) are depicted. Since the logarithmically-enhanced cutoff effect for 𝑘 (�̂�, 𝑡)
has a different sign, it approaches the continuum limit from below and can therefore serve as an
additional systematic check.

5. Results

In order to perform a controlled continuum extrapolation, we incorporate the various improve-
ments mentioned in the previous section in our analysis. To obtain the physical result for 𝐷𝑙 (5
GeV2) we perform a global fit which includes a continuum extrapolation, an interpolation to the
physical point, where 𝑋𝑙 and 𝑋𝑠 parametrize the small difference in the quark masses from their
physical values, and the determination of strong-isospin breaking (SIB) and QED corrections,

𝐷 (𝑄2, 𝑎) = 𝐷 (𝑄2, 0) + 𝐴(𝑎)︸︷︷︸
cont.

extrap.

+ 𝐵𝑋𝑙 + 𝐶𝑋𝑠︸       ︷︷       ︸
interpolation to
physical point

+ 𝐸
𝑀2
𝐾0

− 𝑀2
𝐾+

𝑀2
Ω

+ 𝐹𝑒2
𝑣 + 𝐺𝑒𝑣𝑒𝑠 + 𝐻𝑒2

𝑠︸                                           ︷︷                                           ︸
determination of

O(𝛿𝑚,𝑒2 ) corrections

, (21)

with

𝑋𝑙 =
𝑀2
𝜋0

𝑀2
Ω

−
[
𝑀2
𝜋0

𝑀2
Ω

]
∗
, 𝑋𝑠 =

𝑀2
𝐾𝜒

𝑀2
Ω

−
[
𝑀2
𝐾𝜒

𝑀2
Ω

]
∗
, 𝑀2

𝐾𝜒
≡ 1

2

(
𝑀2
𝐾0

+ 𝑀2
𝐾+

− 𝑀2
𝜋+

)
(22)

and

𝐴(𝑎) = 𝐴2 [𝑎2𝛼𝑛𝑠 (1/𝑎)] + 𝐴2𝑙𝑎
2 log(𝑎2) + 𝐴4 [𝑎2𝛼𝑛𝑠 (1/𝑎)]2 , (23)
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Figure 5: Preliminary global fit of the light contribution to 𝐷 (5 GeV2). Left: In red the fits to the improved
lattice results that enter the systematic uncertainty. In orange and violet, the fits to the unimproved lattice
results employing 𝑘 (𝑄, 𝑡) and 𝑘 (�̂�, 𝑡), respectively. Right: Zoom on the fits which enter the estimation of
the systematic uncertainty. The linestyles indicate the various improvements. The green point at 𝑎2 = 0 is
the continuum extrapolated value with statistical and combined statistical and systematic uncertainties.

where 𝐴2, 𝐴2𝑙, 𝐴4, 𝐵, 𝐶, 𝐸, 𝐹, 𝐺, 𝐻 are fit parameters. Note that we also distinguish valence, 𝑒𝑣 , and
sea, 𝑒𝑠, electric charges as in [9, 14]. In Figure 5 we show a preliminary continuum extrapolation
of 𝐷𝑙 (5 GeV2) with inclusion of SIB and QED corrections to O(𝛿𝑚, 𝑒2) as detailed in [9, 14]. It
includes a systematic error originating from the continuum extrapolation, as this will be the largest
source of uncertainty. The scale is set using the Ω-mass, 𝑎2 = ((𝑎𝑀Ω− )/[𝑀Ω− ]∗)2. We include 25
of our 26, 4-stout ensembles with lattice spacings ranging from 0.118 fm to 0.064 fm and quark
masses bracketing the physical point [9]. To estimate the systematic error originating from the
continuum extrapolation, we perform cuts in the lattice spacing, we vary the anomalous dimension
(the power of the strong coupling constant in the lattice-spacing dependence in Eq. (23)), which
is not specifically known for this quantity, from 𝑛 = 0 to 𝑛 = 3 [15]. We further incorporate the
following additional variations. We always improve the lattice results employing the prescription
in Eq. (10), but we subtract or not the additional discretization effect of Eq. (17) and twice this
correction, we force 𝐴2𝑙 = 0 or leave it free in the fit and we employ both 𝑘 (𝑄, 𝑡) and 𝑘 (�̂�, 𝑡) as a
kernel in Eq. (7). The systematic uncertainty is estimated by assigning Akaike Information Criterion
weights to each of the various fits. In this preliminary analysis these weights are used in a simplified
fashion by taking the variance of the weighted fit values. The statistical uncertainty is estimated
using the jackknife method with 𝑁𝐽 = 48 jackknife samples. For more details about the fitting
procedure see the supplementary material in [9] (section Type-I fits). The fits to the unimproved
lattice points (violet and orange) are not included in the determination of the systematic uncertainty.
However, as can be observed, extrapolations using all simulations nicely lie within the estimated
uncertainty. At 5 GeV2, the improvement removes up to ∼ 20% of the discretization effects on our
coarsest lattice and allows a controlled continuum limit.

6. Conclusion

To determine the hadronic contribution to the running of the electromagnetic coupling using
ab-initio lattice QCD calculations up to scales of a few GeV requires controlling large discretization
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errors and logarithmically-enhanced cutoff effects. For this purpose, we investigate a number of im-
provement procedures based on lattice perturbation theory. To illustrate the resulting improvements,
we focus on the connected light-quark contribution to the Adler function at 5 GeV2, for which we
present a preliminary continuum extrapolation including strong and QED isospin breaking effects
to O(𝛿𝑚, 𝑒2). As discussed above, these improvements significantly reduce discretization errors
and allow a controlled continuum extrapolation. These insights can now be applied to the short
distance contributions to the running of 𝛼. Moreover, we will perform the outlined analysis for the
strange, the charm and the disconnected contribution, including a full estimation of the systematic
uncertainty as in [9]. While we focused on the challenges encountered at high energies, at low mo-
menta, finite-size effects and, since we are using staggered fermions, taste-breaking effects become
important. These will be addressed in future work.
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